首页
/ PyTorch-Image-Models 中学习率调度器的初始化机制解析

PyTorch-Image-Models 中学习率调度器的初始化机制解析

2025-05-04 10:25:35作者:董灵辛Dennis

在深度学习训练过程中,学习率调度器(Scheduler)的正确使用对于模型收敛至关重要。本文将以PyTorch-Image-Models项目中的学习率调度器实现为例,深入分析其初始化机制及使用注意事项。

学习率调度器的两种调用时机

PyTorch-Image-Models中的调度器设计采用了与PyTorch原生调度器不同的调用策略:

  1. epoch级调度:在每个epoch结束时调用,在增加epoch计数器之前计算下一个epoch的值
  2. step级调度:在每次优化器更新后调用,在增加更新计数器之后计算下一个更新的值

这种设计看似合理,但实际上存在一个潜在问题:在训练循环的第一批数据上,调度器可能无法正确应用初始学习率。

问题本质分析

问题的根源在于调度器的初始化时机。许多开发者会采用如下训练循环结构:

for batch in dataloader:
    # 前向传播和反向传播
    optimizer.step()
    scheduler.step_update()  # 在优化器更新后调用

这种情况下,第一批数据使用的学习率实际上是调度器初始化时的默认值,而非预期的初始学习率(如warmup阶段的小学习率)。这是因为在第一批数据训练前,调度器尚未有机会进行任何更新。

调度器的内部机制

深入分析PyTorch-Image-Models的调度器实现,可以发现:

  1. 调度器子类在构造函数中会通过update_groups方法初始化优化器的学习率
  2. 这种初始化确保了即使在没有调用step_update的情况下,第一批数据也能获得正确的初始学习率
  3. 这种设计实际上是一种隐式的初始化机制,可能不易被开发者察觉

最佳实践建议

基于上述分析,建议开发者:

  1. 在使用自定义调度器时,务必了解其初始化机制
  2. 检查调度器是否在构造函数中正确设置了初始学习率
  3. 对于需要warmup的场景,确保第一批数据能获得预期的学习率
  4. 考虑将调度器调用移至优化器更新前,以获得更直观的行为

总结

PyTorch-Image-Models中的调度器设计通过隐式初始化机制解决了第一批数据学习率不正确的问题。这种设计虽然有效,但可能不够直观。开发者在使用时应当充分理解其工作机制,避免因误解调用时机而导致训练效果不佳。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
506
42
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
335
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70