Rebar3中CT测试与编译钩子的工作目录差异问题分析
2025-07-09 15:11:48作者:邬祺芯Juliet
问题背景
在使用Rebar3构建Erlang项目时,特别是包含NIF(C语言扩展)的umbrella项目,开发者经常会遇到一个棘手的问题:ct
(Common Test)钩子和compile
钩子在执行时的工作目录($PWD
)不一致,导致构建和测试流程出现异常。
现象描述
在一个典型的umbrella项目结构中:
项目根目录
- apps
- -- 应用A
- -- 应用B
当在项目根目录执行rebar3 ct
命令时,会出现以下现象:
compile
钩子会在应用目录下执行(如apps/应用A
)ct
钩子却会在项目根目录下执行
这种差异会导致基于路径的构建命令(如CMake)无法正确找到源文件,特别是当需要为NIF编写单元测试时,这个问题尤为突出。
技术原理分析
Rebar3钩子执行机制
Rebar3的钩子执行遵循特定的规则:
- 应用级钩子:定义在应用目录的
rebar.config
中,执行时会切换到该应用目录 - 项目级钩子:定义在项目根目录的
rebar.config
中,执行时保持在项目根目录
CT测试的特殊性
Common Test(CT)在Rebar3中有特殊处理:
- CT测试被视为全局性操作,而非应用级操作
- 所有测试用例会被收集到同一个目录(
_build/test/extras/tests
) - 日志文件也统一存放在全局目录(
_build/test/logs
)
这种设计导致ct
钩子始终在项目根目录执行,与应用级的compile
钩子行为不一致。
解决方案
方案一:使用项目级配置
将所有构建配置移到项目根目录的rebar.config
中:
{pre_hooks, [
{ct, "cmake命令"},
{compile, "cmake命令"}
]}.
优点:
- 保证所有钩子在同一目录下执行
- 配置集中管理
缺点:
- 失去了应用级别的隔离性
- 不适合需要应用独立配置的场景
方案二:使用环境变量控制
通过Rebar3的profile机制控制构建行为:
- 在
rebar.config
中定义profile:
{profiles, [
{unit, [
{shell_hook_env, [
{"BUILD_UNIT_TESTS", "1"}
]}
]}
]}.
- 在应用配置中根据环境变量调整构建:
{pre_hooks, [
{compile, "cmake -DMYLIB_UNIT_TESTS=${BUILD_UNIT_TESTS}"},
{ct, "/bin/sh -c '[ -z ${BUILD_UNIT_TESTS+x} ] || ctest命令'"}
]}.
优点:
- 保持应用级别配置
- 灵活控制测试行为
- 可通过
rebar3 as unit ct
触发特定构建
方案三:自定义测试命令
对于NIF单元测试,可以考虑:
- 将C测试作为独立的构建目标
- 通过自定义Rebar3命令来运行
- 与Erlang的CT测试分开管理
最佳实践建议
-
简单项目:采用项目级配置,统一工作目录
-
复杂umbrella项目:
- 使用环境变量控制不同构建场景
- 考虑将C测试与Erlang测试分离
- 为NIF测试编写专门的Makefile或CMake脚本
-
长期维护:
- 文档化构建流程
- 在CI中明确区分不同测试阶段
- 考虑使用容器化构建环境消除路径依赖
总结
Rebar3中ct
与compile
钩子的工作目录差异源于其设计理念:CT被视为全局操作,而编译是应用级操作。理解这一设计原理后,开发者可以通过调整配置策略或引入环境变量控制来解决路径问题。对于包含NIF的复杂项目,建议采用方案二的profile机制,既能保持灵活性,又能确保构建可靠性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K