在Conan中打包和复用CMake函数模块的最佳实践
2025-05-26 12:05:13作者:龚格成
背景介绍
在现代C++项目中,我们经常需要编写一些通用的CMake函数来简化构建过程。这些函数可能包括设置编译器标志、添加测试目标、配置代码生成等实用功能。传统做法是将这些函数直接放在项目代码库中,但随着项目规模扩大和多项目共享需求增加,更好的做法是将这些CMake函数模块化并打包分发。
项目结构示例
假设我们有一个典型项目结构如下:
my-app/
├─ cmake (submodule)/
│ ├─ usefulFunctions.cmake
├─ src/
│ ├─ main.cpp
├─ CMakeLists.txt
其中usefulFunctions.cmake包含了我们想要共享的CMake函数。
传统CMake安装方式
在纯CMake环境中,我们可以使用install命令来安装这些CMake函数文件:
include(GNUInstallDirs)
install(
FILES ${CMAKE_CURRENT_LIST_DIR}/usefulFunctions.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/
)
这种方式虽然可行,但缺乏版本管理和依赖解析能力,这正是Conan可以解决的问题。
使用Conan打包CMake函数模块
Conan提供了两种主要方式来共享CMake代码:
1. 作为工具依赖(tool_requires)
当你的CMake模块不包含任何特定于平台的代码,纯粹是构建辅助功能时,可以将其打包为工具依赖。
创建conanfile.py时需要注意:
from conan import ConanFile
class CMakeFunctionsConan(ConanFile):
name = "cmake_functions"
version = "1.0"
exports_sources = "usefulFunctions.cmake"
def package(self):
self.copy("usefulFunctions.cmake", dst="lib/cmake")
def package_info(self):
# 让使用者知道在哪里可以找到这个cmake模块
self.cpp_info.builddirs = ["lib/cmake"]
2. 作为常规依赖(requires)
如果你的CMake模块与特定库相关,可以作为常规依赖打包:
from conan import ConanFile
class MyLibraryConan(ConanFile):
name = "mylibrary"
version = "1.0"
exports_sources = "*.cmake", "src/*"
def package(self):
self.copy("*.cmake", dst="lib/cmake")
self.copy("*.h", dst="include")
self.copy("*.lib", dst="lib")
def package_info(self):
self.cpp_info.libs = ["mylibrary"]
self.cpp_info.builddirs = ["lib/cmake"]
在消费者项目中使用
在消费者项目的conanfile.py中:
# 对于工具依赖
tool_requires("cmake_functions/1.0")
# 对于常规依赖
requires("mylibrary/1.0")
然后在CMake中可以直接包含这些模块:
# 查找并包含我们的实用函数
include(usefulFunctions)
# 使用其中定义的函数
my_custom_function()
最佳实践建议
- 命名规范:为CMake模块使用独特的命名前缀,避免与其他包冲突
- 版本控制:每次修改CMake函数都应该升级版本号
- 文档说明:在包描述中清晰说明提供的CMake函数及其用法
- 测试验证:为CMake函数编写测试用例,确保它们在不同环境下正常工作
- 依赖管理:如果CMake函数依赖其他Conan包,确保正确声明这些依赖
常见问题解决
- 路径问题:确保在
package_info()中正确设置builddirs,这样CMake才能找到你的模块 - 作用域问题:注意CMake函数中使用的变量作用域,避免污染调用者的命名空间
- 兼容性问题:考虑不同CMake版本间的兼容性,使用适当的
cmake_minimum_required
通过将CMake函数模块打包为Conan包,我们可以实现跨项目的代码复用,同时享受Conan提供的版本管理和依赖解析功能,大大提高了C++项目的可维护性和协作效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896