在Python中直接调用nnUNet训练模型进行推理的方法
2025-06-02 23:23:36作者:钟日瑜
背景介绍
nnUNet是医学图像分割领域广泛使用的优秀框架,其标准使用方式是通过命令行工具进行模型训练和预测。但在实际应用中,开发者有时需要将训练好的模型直接集成到Python代码中,而不是通过终端命令调用。
标准命令行预测方式
nnUNet通常通过以下命令进行预测:
nnUNetv2_predict -d Dataset510_Testsplits_cardiac -i "$input_data" -o "$output_data" -f 0 1 2 3 4 -tr nnUNetTrainer -c 2d -p nnUNetPlans --save_probabilities
这种方式虽然简单直接,但在需要将模型集成到更复杂的工作流中时,就显得不够灵活。
Python直接集成方案
nnUNet提供了Python API,允许开发者直接在代码中调用训练好的模型。核心类是nnUNetPredictor,它封装了完整的预测流程,包括预处理、网络前向传播和后处理等步骤。
基本使用示例
from nnunetv2.paths import nnUNet_results, nnUNet_raw
import torch
from batchgenerators.utilities.file_and_folder_operations import join
from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor
# 初始化预测器
predictor = nnUNetPredictor(
tile_step_size=0.5,
use_gaussian=True,
use_mirroring=True,
perform_everything_on_device=True,
device=torch.device('cuda', 0),
verbose=False,
verbose_preprocessing=False,
allow_tqdm=True
)
# 加载训练好的模型
predictor.initialize_from_trained_model_folder(
join(nnUNet_results, 'Dataset003_Liver/nnUNetTrainer__nnUNetPlans__3d_lowres'),
use_folds=(0,),
checkpoint_name='checkpoint_final.pth',
)
# 执行预测
predictor.predict_from_files(
join(nnUNet_raw, 'Dataset003_Liver/imagesTs'),
join(nnUNet_raw, 'Dataset003_Liver/imagesTs_predlowres'),
save_probabilities=False,
overwrite=False,
num_processes_preprocessing=2,
num_processes_segmentation_export=2,
folder_with_segs_from_prev_stage=None,
num_parts=1,
part_id=0
)
关键参数说明
-
预测器初始化参数:
tile_step_size: 控制重叠区域大小的步长use_gaussian: 是否使用高斯权重use_mirroring: 是否使用测试时数据增强perform_everything_on_device: 是否全程在GPU上执行
-
模型加载参数:
- 需要指定模型存储路径和检查点名称
- 可以指定使用的交叉验证折数
-
预测参数:
- 可以控制是否保存概率图
- 支持多进程预处理和结果导出
注意事项
-
nnUNet的预测流程不仅仅是简单的模型前向传播,还包括了完整的预处理和后处理流程,这是保证预测质量的关键。
-
如果确实需要直接访问模型对象,可以通过predictor.network属性获取,但建议仅在充分理解nnUNet内部机制的情况下这样做。
-
对于大多数应用场景,使用封装好的predict_from_files方法已经足够,它提供了与命令行工具相同的功能,但更加灵活。
总结
通过nnUNet提供的Python API,开发者可以方便地将训练好的模型集成到自己的Python工作流中,实现更灵活的医学图像分割应用。这种方式既保留了nnUNet强大的预处理和预测能力,又提供了更好的程序集成性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
268
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
435
Ascend Extension for PyTorch
Python
100
126
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
605
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1