KubeHelper 开源项目教程
1. 项目介绍
KubeHelper 是一个通过 Web 界面简化日常 Kubernetes 集群任务的开源工具。它提供了搜索、分析、运行命令、管理定时任务(cron jobs)、生成报告、过滤资源、Git 同步等功能。KubeHelper 旨在帮助 Kubernetes 管理员和开发人员更高效地管理和操作 Kubernetes 集群,减少在命令行中输入复杂命令的需求。
2. 项目快速启动
2.1 安装 KubeHelper
KubeHelper 可以通过 Helm 进行安装。以下是安装步骤:
2.1.1 下载 KubeHelper Helm Chart
curl -O https://github.com/KubeHelper/kubehelper/blob/main/installers/helm/kubehelper-1.0.0.tar.gz
2.1.2 安装 KubeHelper
helm install -n YOURNAMESPACE kubehelper ./kubehelper-1.0.0.tar.gz
2.1.3 配置 KubeHelper
KubeHelper 默认使用 kube/helper 作为用户名和密码。你可以通过以下命令修改默认的用户名和密码:
helm install --set kubehelper.username=myusername --set kubehelper.password=mypassword -n YOURNAMESPACE kubehelper ./kubehelper-1.0.0.tar.gz
2.2 访问 KubeHelper
KubeHelper 默认在容器内的 8080 端口运行。你可以通过以下 URL 访问 KubeHelper:
http://kubehelper-svc.YOUR-NAMESPACE:8080/kubehelper
3. 应用案例和最佳实践
3.1 集群资源搜索与分析
KubeHelper 提供了强大的搜索和分析功能,可以帮助管理员快速查找和过滤集群中的资源。例如,你可以通过 KubeHelper 查找所有带有特定标签的 Pod,或者分析集群中所有服务的 IP 和端口信息。
3.2 定时任务管理
KubeHelper 支持创建和管理 Kubernetes 定时任务(Cron Jobs)。你可以通过 Web 界面轻松创建、执行和查看定时任务的报告,大大简化了定时任务的管理流程。
3.3 安全管理
KubeHelper 提供了对 Kubernetes 集群安全配置的查看和管理功能。你可以通过 KubeHelper 查看和管理角色、规则、RBAC、Pod 和容器的安全上下文、服务账户等,帮助你更好地管理和保护集群的安全。
4. 典型生态项目
4.1 Kubernetes Dashboard
KubeHelper 可以与 Kubernetes Dashboard 结合使用,提供更全面的集群管理和监控功能。KubeHelper 专注于集群任务的简化,而 Kubernetes Dashboard 则提供了更详细的集群状态和资源使用情况的可视化。
4.2 Helm
KubeHelper 的安装和管理可以通过 Helm 进行,Helm 是 Kubernetes 的包管理工具,可以帮助你更方便地部署和管理 Kubernetes 应用。
4.3 Terraform
KubeHelper 还支持通过 Terraform 进行安装和管理。Terraform 是一个基础设施即代码(IaC)工具,可以帮助你自动化 Kubernetes 集群的部署和管理。
通过以上模块的介绍和实践,你可以快速上手并充分利用 KubeHelper 来简化你的 Kubernetes 集群管理任务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00