KubeHelper 开源项目教程
1. 项目介绍
KubeHelper 是一个通过 Web 界面简化日常 Kubernetes 集群任务的开源工具。它提供了搜索、分析、运行命令、管理定时任务(cron jobs)、生成报告、过滤资源、Git 同步等功能。KubeHelper 旨在帮助 Kubernetes 管理员和开发人员更高效地管理和操作 Kubernetes 集群,减少在命令行中输入复杂命令的需求。
2. 项目快速启动
2.1 安装 KubeHelper
KubeHelper 可以通过 Helm 进行安装。以下是安装步骤:
2.1.1 下载 KubeHelper Helm Chart
curl -O https://github.com/KubeHelper/kubehelper/blob/main/installers/helm/kubehelper-1.0.0.tar.gz
2.1.2 安装 KubeHelper
helm install -n YOURNAMESPACE kubehelper ./kubehelper-1.0.0.tar.gz
2.1.3 配置 KubeHelper
KubeHelper 默认使用 kube/helper 作为用户名和密码。你可以通过以下命令修改默认的用户名和密码:
helm install --set kubehelper.username=myusername --set kubehelper.password=mypassword -n YOURNAMESPACE kubehelper ./kubehelper-1.0.0.tar.gz
2.2 访问 KubeHelper
KubeHelper 默认在容器内的 8080 端口运行。你可以通过以下 URL 访问 KubeHelper:
http://kubehelper-svc.YOUR-NAMESPACE:8080/kubehelper
3. 应用案例和最佳实践
3.1 集群资源搜索与分析
KubeHelper 提供了强大的搜索和分析功能,可以帮助管理员快速查找和过滤集群中的资源。例如,你可以通过 KubeHelper 查找所有带有特定标签的 Pod,或者分析集群中所有服务的 IP 和端口信息。
3.2 定时任务管理
KubeHelper 支持创建和管理 Kubernetes 定时任务(Cron Jobs)。你可以通过 Web 界面轻松创建、执行和查看定时任务的报告,大大简化了定时任务的管理流程。
3.3 安全管理
KubeHelper 提供了对 Kubernetes 集群安全配置的查看和管理功能。你可以通过 KubeHelper 查看和管理角色、规则、RBAC、Pod 和容器的安全上下文、服务账户等,帮助你更好地管理和保护集群的安全。
4. 典型生态项目
4.1 Kubernetes Dashboard
KubeHelper 可以与 Kubernetes Dashboard 结合使用,提供更全面的集群管理和监控功能。KubeHelper 专注于集群任务的简化,而 Kubernetes Dashboard 则提供了更详细的集群状态和资源使用情况的可视化。
4.2 Helm
KubeHelper 的安装和管理可以通过 Helm 进行,Helm 是 Kubernetes 的包管理工具,可以帮助你更方便地部署和管理 Kubernetes 应用。
4.3 Terraform
KubeHelper 还支持通过 Terraform 进行安装和管理。Terraform 是一个基础设施即代码(IaC)工具,可以帮助你自动化 Kubernetes 集群的部署和管理。
通过以上模块的介绍和实践,你可以快速上手并充分利用 KubeHelper 来简化你的 Kubernetes 集群管理任务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00