Beszel项目中的传感器温度读数异常问题分析与解决方案
问题背景
在Beszel监控系统中,用户报告了两台Linux设备出现了温度读数异常的情况。第一台是Dell Optiplex 3080 Micro设备,运行Ubuntu 24.04.2 LTS系统;第二台是基于AMD Ryzen AM4平台的Asus ROG STRIX X570-F GAMING主板设备。
异常现象分析
Dell设备异常表现
该设备通过sensors命令显示多个核心温度在59-65°C之间,但Beszel仪表板显示的温度值明显异常。从技术角度看,这可能是由于系统从多个温度源获取数据时,选择了不准确的传感器读数。
AMD平台异常表现
这台设备的情况更为复杂,系统中存在多个温度传感器:
- 主板芯片组传感器显示59°C
- CPU温度传感器显示38°C
- 主板温度传感器显示37°C
- 其他辅助传感器读数从27°C到86°C不等
特别值得注意的是AUXTIN0和AUXTIN3传感器显示82°C和86°C的高温报警,而其他传感器读数正常。这表明系统可能误选了这些辅助传感器作为主要温度指标。
技术原理
Linux系统的sensors命令通过lm-sensors驱动从硬件传感器获取数据。现代主板上通常有多个温度传感器,包括:
- CPU核心温度传感器
- 主板芯片组传感器
- 辅助环境传感器
- 电源管理芯片传感器
Beszel系统在收集这些数据时,需要智能地识别哪个传感器读数最能代表设备的实际温度状态。当系统无法正确识别主要传感器时,就可能选择到不准确的辅助传感器读数。
解决方案
Beszel提供了环境变量配置选项来解决这类问题。通过设置SENSORS环境变量,可以实现:
-
黑名单模式:排除已知不准确的传感器
SENSORS="-AUXTIN0 -AUXTIN3" -
白名单模式:只使用指定的可靠传感器
SENSORS="+Core +CPU"
这种灵活的配置方式允许管理员根据具体硬件情况调整温度监控策略,确保获取准确的温度数据。
实施建议
对于报告中的两台设备,建议采取以下配置:
-
Dell设备:
SENSORS="+Package +Core"这将只使用CPU封装和核心温度传感器,忽略可能的错误辅助传感器。
-
AMD平台:
SENSORS="-AUXTIN0 -AUXTIN3 +Tctl +CPU"排除高温报警的辅助传感器,专注于CPU相关温度读数。
总结
硬件传感器的多样性可能导致监控系统获取不准确的数据。Beszel通过灵活的传感器过滤机制为管理员提供了解决问题的工具。理解硬件传感器的布局和特性,结合适当的配置,可以确保温度监控的准确性。对于复杂的硬件环境,建议逐步测试不同配置,找到最适合特定设备的传感器组合。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00