AWS Deep Learning Containers发布PyTorch Graviton GPU推理镜像v1.16
2025-07-07 14:18:39作者:温玫谨Lighthearted
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化和测试的Docker镜像,专门用于简化深度学习工作负载的部署。这些容器镜像预装了流行的深度学习框架、依赖项和工具,使开发者和数据科学家能够快速启动和运行深度学习应用,而无需花费大量时间配置环境。
近日,AWS发布了PyTorch框架的Graviton处理器专用GPU推理镜像新版本v1.16,基于PyTorch 2.4.0构建,支持CUDA 12.4和Python 3.11环境。这一版本特别针对搭载Graviton处理器的EC2实例进行了优化,为ARM架构提供了更好的性能支持。
镜像技术细节
该镜像基于Ubuntu 22.04操作系统构建,主要包含以下关键组件:
- PyTorch核心框架:2.4.0版本,针对CUDA 12.4进行了优化
- Python环境:3.11版本
- CUDA支持:12.4版本,包含cublas和cudnn等关键GPU加速库
- 常用工具包:预装了NumPy、Pandas、SciPy等科学计算库,以及OpenCV等计算机视觉库
镜像中还包含了TorchServe(0.12.0版本)和Torch Model Archiver等工具,方便用户直接部署PyTorch模型服务。
环境配置与依赖
该镜像已经预配置了完整的深度学习开发环境,主要包含以下依赖项:
-
系统级依赖:
- GCC 11工具链
- C++标准库
- CUDA命令行工具
-
Python包:
- 数据处理:NumPy 1.26.4、Pandas 2.2.3、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:boto3 1.35.54、awscli 1.35.20
-
PyTorch生态:
- torchaudio 2.4.0
- torchvision 0.19.0
使用场景
这个专用镜像特别适合以下场景:
- ARM架构GPU推理:针对Graviton处理器的优化使得在EC2实例上运行PyTorch推理任务更加高效
- 模型服务部署:内置的TorchServe工具简化了模型服务的部署流程
- 计算机视觉应用:预装的OpenCV和torchvision等库为CV任务提供了开箱即用的支持
- AWS云环境集成:预装的AWS CLI和boto3等工具方便与AWS服务进行交互
性能优化特点
这个版本的镜像针对Graviton处理器和CUDA 12.4进行了多项优化:
- ARM架构优化:所有组件都针对ARM64架构进行了编译优化
- CUDA加速:充分利用NVIDIA GPU的并行计算能力
- 内存效率:优化了内存使用模式,适合大规模模型推理
- 计算库优化:集成了针对ARM优化的BLAS等数学计算库
总结
AWS Deep Learning Containers的这一新版本为使用PyTorch框架在Graviton处理器上进行GPU加速推理的用户提供了开箱即用的解决方案。通过预装优化的软件栈和工具链,开发者可以专注于模型开发和部署,而不必花费时间在环境配置上。特别是对于已经在AWS云环境中使用Graviton实例的用户,这个镜像可以显著简化工作流程并提升性能。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React实验项目的分类修正2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23