GSplat项目中张量尺寸不匹配问题的分析与解决
问题背景
在GSplat项目的测试过程中,发现test_fully_fused_projection_packed测试用例存在间歇性失败的问题。该测试用于验证投影变换的核心功能,涉及多个张量操作和梯度计算。失败时会出现张量尺寸不匹配的错误,具体表现为两个张量在非单一维度上的尺寸不一致。
问题现象
测试失败时抛出的错误信息显示,在计算梯度时,张量a和张量b在第0维的尺寸不一致。例如,一个张量尺寸为193831,而另一个为193829。这种尺寸差异导致无法完成张量间的乘法操作。
技术分析
该测试用例的核心是验证投影变换及其梯度计算的正确性。测试过程中会生成随机数据,包括视图矩阵(viewmats)、四元数(quats)、缩放因子(scales)和均值(means),然后通过这些参数计算2D均值(means2d)、深度(depths)和圆锥曲线(conics)。
问题出现在梯度计算阶段,当使用选择索引sel来筛选有效数据时,可能导致前后张量尺寸不一致。这是因为sel是基于半径筛选的条件,而不同运行环境下随机生成的数据可能导致筛选结果存在微小差异。
解决方案
经过分析,提出了以下解决方案:
-
使用
__radii > 0作为筛选条件替代原来的sel索引。因为__radii直接反映了高斯分布的有效性,可以确保前后张量尺寸的一致性。 -
修改梯度计算部分的代码,确保所有参与计算的张量在相同条件下进行筛选:
v_viewmats, v_quats, v_scales, v_means = torch.autograd.grad(
(means2d * v_means2d[__radii > 0]).sum()
+ (depths * v_depths[__radii > 0]).sum()
+ (normals * v_normals[__radii > 0]).sum()
+ (conics * v_conics[__radii > 0]).sum(),
(viewmats, quats, scales, means),
retain_graph=True,
)
技术原理
这个问题的本质在于PyTorch张量操作的尺寸一致性要求。在自动微分过程中,所有参与计算的张量必须在非单一维度上保持相同尺寸。使用基于半径的筛选条件比使用中间变量索引更可靠,因为它直接反映了数据的有效性边界。
影响范围
该问题主要影响测试环节,不会影响核心功能的正确性。但由于测试是保证代码质量的重要手段,修复这个问题对于确保项目稳定性非常重要。
总结
通过分析GSplat项目中出现的张量尺寸不匹配问题,我们理解了在复杂张量操作中保持尺寸一致性的重要性。使用更直接的筛选条件可以避免因中间变量导致的尺寸不一致问题。这个案例也提醒我们,在编写涉及多步骤张量操作的代码时,需要特别注意各步骤间的尺寸匹配问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00