ECO-pytorch:高效视频理解的开源利器
2024-09-26 09:12:21作者:郦嵘贵Just
项目介绍
ECO-pytorch 是一个基于PyTorch的开源项目,旨在为在线视频理解提供高效的卷积网络解决方案。该项目由Mohammadreza Zolfaghari、Kamaljeet Singh和Thomas Brox共同开发,并在其论文《ECO: Efficient Convolutional Network for Online Video Understanding》中详细阐述了其技术细节。ECO-pytorch不仅提供了最新的代码实现,还包含了预训练模型,方便开发者快速上手和应用。
项目技术分析
ECO-pytorch的核心技术基于Efficient Convolutional Network (ECO),这是一种专门为在线视频理解设计的高效卷积网络。ECO通过结合2D和3D卷积的优势,能够在保持高精度的同时显著降低计算复杂度。项目代码基于tsn-pytorch进行了修改,并提供了详细的训练和数据集生成脚本,使得开发者可以轻松地进行模型训练和评估。
项目的环境要求为Python 3.6.4和PyTorch 0.3.1,确保了代码的兼容性和稳定性。通过简单的命令行操作,开发者可以快速生成数据集列表并启动训练过程,极大地简化了开发流程。
项目及技术应用场景
ECO-pytorch适用于多种视频理解任务,包括但不限于:
- 视频分类:通过对视频帧进行分析,自动识别视频内容所属的类别。
- 动作识别:识别视频中人物的动作,如跑步、跳跃等。
- 视频摘要:自动生成视频的关键帧或摘要,便于快速浏览和检索。
这些应用场景在智能监控、视频推荐系统、体育分析等领域具有广泛的应用前景。
项目特点
- 高效性:ECO网络通过优化卷积结构,显著降低了计算复杂度,使得模型在保持高精度的同时更加高效。
- 易用性:项目提供了详细的文档和预训练模型,开发者可以快速上手,无需从头开始训练模型。
- 灵活性:支持多种数据集和训练配置,开发者可以根据具体需求进行定制化调整。
- 开源性:作为一个开源项目,ECO-pytorch鼓励社区贡献和改进,不断推动技术的进步。
通过ECO-pytorch,开发者可以轻松构建高效的视频理解系统,满足各种实际应用需求。无论你是研究者还是开发者,ECO-pytorch都将成为你视频理解任务中的得力助手。
如何开始
-
克隆项目:
git clone https://github.com/zhang-can/ECO-pytorch -
生成数据集列表:
python gen_dataset_lists.py <ucf101/something> <dataset_frames_root_path>例如:
python gen_dataset_lists.py something ~/dataset/20bn-something-something-v1/ -
开始训练:
python main.py ucf101 RGB <ucf101_rgb_train_list> <ucf101_rgb_val_list> \ --arch ECO --num_segments 4 --gd 5 --lr 0.001 --lr_steps 30 60 --epochs 80 \ -b 32 -i 1 -j 1 --dropout 0.8 --snapshot_pref ucf101_ECO --rgb_prefix img_ \ --consensus_type identity --eval-freq 1
ECO-pytorch,让你的视频理解任务更加高效、便捷!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2暂无简介Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
559
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
141
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
127
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
731
70