ECO-pytorch:高效视频理解的开源利器
2024-09-26 13:35:21作者:郦嵘贵Just
项目介绍
ECO-pytorch 是一个基于PyTorch的开源项目,旨在为在线视频理解提供高效的卷积网络解决方案。该项目由Mohammadreza Zolfaghari、Kamaljeet Singh和Thomas Brox共同开发,并在其论文《ECO: Efficient Convolutional Network for Online Video Understanding》中详细阐述了其技术细节。ECO-pytorch不仅提供了最新的代码实现,还包含了预训练模型,方便开发者快速上手和应用。
项目技术分析
ECO-pytorch的核心技术基于Efficient Convolutional Network (ECO),这是一种专门为在线视频理解设计的高效卷积网络。ECO通过结合2D和3D卷积的优势,能够在保持高精度的同时显著降低计算复杂度。项目代码基于tsn-pytorch进行了修改,并提供了详细的训练和数据集生成脚本,使得开发者可以轻松地进行模型训练和评估。
项目的环境要求为Python 3.6.4和PyTorch 0.3.1,确保了代码的兼容性和稳定性。通过简单的命令行操作,开发者可以快速生成数据集列表并启动训练过程,极大地简化了开发流程。
项目及技术应用场景
ECO-pytorch适用于多种视频理解任务,包括但不限于:
- 视频分类:通过对视频帧进行分析,自动识别视频内容所属的类别。
- 动作识别:识别视频中人物的动作,如跑步、跳跃等。
- 视频摘要:自动生成视频的关键帧或摘要,便于快速浏览和检索。
这些应用场景在智能监控、视频推荐系统、体育分析等领域具有广泛的应用前景。
项目特点
- 高效性:ECO网络通过优化卷积结构,显著降低了计算复杂度,使得模型在保持高精度的同时更加高效。
- 易用性:项目提供了详细的文档和预训练模型,开发者可以快速上手,无需从头开始训练模型。
- 灵活性:支持多种数据集和训练配置,开发者可以根据具体需求进行定制化调整。
- 开源性:作为一个开源项目,ECO-pytorch鼓励社区贡献和改进,不断推动技术的进步。
通过ECO-pytorch,开发者可以轻松构建高效的视频理解系统,满足各种实际应用需求。无论你是研究者还是开发者,ECO-pytorch都将成为你视频理解任务中的得力助手。
如何开始
-
克隆项目:
git clone https://github.com/zhang-can/ECO-pytorch -
生成数据集列表:
python gen_dataset_lists.py <ucf101/something> <dataset_frames_root_path>例如:
python gen_dataset_lists.py something ~/dataset/20bn-something-something-v1/ -
开始训练:
python main.py ucf101 RGB <ucf101_rgb_train_list> <ucf101_rgb_val_list> \ --arch ECO --num_segments 4 --gd 5 --lr 0.001 --lr_steps 30 60 --epochs 80 \ -b 32 -i 1 -j 1 --dropout 0.8 --snapshot_pref ucf101_ECO --rgb_prefix img_ \ --consensus_type identity --eval-freq 1
ECO-pytorch,让你的视频理解任务更加高效、便捷!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19