My-FyiReporting 项目下载及安装教程
1. 项目介绍
My-FyiReporting 是一个基于 .NET 的报表设计器和查看器,支持多种报表类型,如表格、自由格式、矩阵和图表。它基于 Microsoft 的 Report Definition Language (RDL),并提供了一个所见即所得(WYSIWYG)的设计器,使用户无需了解 RDL 即可创建报表。该项目还支持多种输出格式,如 HTML、PDF、XML 和打印。My-FyiReporting 是 fyiReporting 项目的一个分支,旨在继续维护和开发该项目的功能。
2. 项目下载位置
My-FyiReporting 项目的源代码托管在 GitHub 上。你可以通过以下步骤下载项目:
-
打开命令行工具(如终端或命令提示符)。
-
使用
git clone命令下载项目:git clone https://github.com/majorsilence/My-FyiReporting.git这将把项目源代码下载到当前目录下的
My-FyiReporting文件夹中。
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Windows、Linux 或 macOS
- .NET 版本:.NET Framework 4.8、.NET 6.0 或更高版本
- 开发工具:Visual Studio 2022 或 Rider 2024.1
3.2 依赖项安装
3.2.1 Windows
在 Windows 上,确保已安装 .NET Framework 4.8 或更高版本。你可以通过 Visual Studio 安装程序来安装所需的 .NET SDK。
3.2.2 Linux
在 Linux 上,确保已安装 Mono 和 libgdiplus。你可以使用以下命令安装这些依赖项:
sudo apt-get install mono-complete libgdiplus
3.2.3 macOS
在 macOS 上,确保已安装 Mono 和 mono-libgdiplus。你可以使用 Homebrew 安装这些依赖项:
brew install mono mono-libgdiplus
3.3 环境变量配置
3.3.1 Linux
在 Linux 上,设置 LD_LIBRARY_PATH 环境变量以确保报表生成功能正常工作:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib
3.3.2 macOS
在 macOS 上,设置 DYLD_LIBRARY_PATH 环境变量:
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/opt/homebrew/lib
4. 项目安装方式
4.1 使用 Visual Studio 或 Rider 打开项目
- 打开 Visual Studio 或 Rider。
- 导航到下载的项目目录
My-FyiReporting。 - 打开解决方案文件
MajorsilenceReporting.sln。 - 等待 IDE 加载项目并解决所有依赖项。
4.2 编译项目
- 在 IDE 中,选择
Build菜单并点击Build Solution。 - 等待编译完成,确保没有错误。
4.3 运行项目
- 在 IDE 中,选择
Run菜单并点击Start。 - 项目将启动,并显示报表设计器界面。
5. 项目处理脚本
My-FyiReporting 项目提供了一些用于构建和发布的脚本,位于项目根目录下。以下是一些常用的脚本:
build-release.ps1:用于构建发布版本的 PowerShell 脚本。build-release-rdlcmd-linux.ps1:用于在 Linux 上构建rdlcmd工具的 PowerShell 脚本。
你可以通过命令行运行这些脚本,例如:
./build-release.ps1
这些脚本将帮助你自动化项目的构建和发布过程。
通过以上步骤,你应该能够成功下载、配置和安装 My-FyiReporting 项目,并开始使用其强大的报表设计功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0119
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00