My-FyiReporting 项目下载及安装教程
1. 项目介绍
My-FyiReporting 是一个基于 .NET 的报表设计器和查看器,支持多种报表类型,如表格、自由格式、矩阵和图表。它基于 Microsoft 的 Report Definition Language (RDL),并提供了一个所见即所得(WYSIWYG)的设计器,使用户无需了解 RDL 即可创建报表。该项目还支持多种输出格式,如 HTML、PDF、XML 和打印。My-FyiReporting 是 fyiReporting 项目的一个分支,旨在继续维护和开发该项目的功能。
2. 项目下载位置
My-FyiReporting 项目的源代码托管在 GitHub 上。你可以通过以下步骤下载项目:
-
打开命令行工具(如终端或命令提示符)。
-
使用
git clone命令下载项目:git clone https://github.com/majorsilence/My-FyiReporting.git这将把项目源代码下载到当前目录下的
My-FyiReporting文件夹中。
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Windows、Linux 或 macOS
- .NET 版本:.NET Framework 4.8、.NET 6.0 或更高版本
- 开发工具:Visual Studio 2022 或 Rider 2024.1
3.2 依赖项安装
3.2.1 Windows
在 Windows 上,确保已安装 .NET Framework 4.8 或更高版本。你可以通过 Visual Studio 安装程序来安装所需的 .NET SDK。
3.2.2 Linux
在 Linux 上,确保已安装 Mono 和 libgdiplus。你可以使用以下命令安装这些依赖项:
sudo apt-get install mono-complete libgdiplus
3.2.3 macOS
在 macOS 上,确保已安装 Mono 和 mono-libgdiplus。你可以使用 Homebrew 安装这些依赖项:
brew install mono mono-libgdiplus
3.3 环境变量配置
3.3.1 Linux
在 Linux 上,设置 LD_LIBRARY_PATH 环境变量以确保报表生成功能正常工作:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib
3.3.2 macOS
在 macOS 上,设置 DYLD_LIBRARY_PATH 环境变量:
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/opt/homebrew/lib
4. 项目安装方式
4.1 使用 Visual Studio 或 Rider 打开项目
- 打开 Visual Studio 或 Rider。
- 导航到下载的项目目录
My-FyiReporting。 - 打开解决方案文件
MajorsilenceReporting.sln。 - 等待 IDE 加载项目并解决所有依赖项。
4.2 编译项目
- 在 IDE 中,选择
Build菜单并点击Build Solution。 - 等待编译完成,确保没有错误。
4.3 运行项目
- 在 IDE 中,选择
Run菜单并点击Start。 - 项目将启动,并显示报表设计器界面。
5. 项目处理脚本
My-FyiReporting 项目提供了一些用于构建和发布的脚本,位于项目根目录下。以下是一些常用的脚本:
build-release.ps1:用于构建发布版本的 PowerShell 脚本。build-release-rdlcmd-linux.ps1:用于在 Linux 上构建rdlcmd工具的 PowerShell 脚本。
你可以通过命令行运行这些脚本,例如:
./build-release.ps1
这些脚本将帮助你自动化项目的构建和发布过程。
通过以上步骤,你应该能够成功下载、配置和安装 My-FyiReporting 项目,并开始使用其强大的报表设计功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00