LLM-Foundry训练卡顿问题分析与解决方案
2025-06-14 20:33:54作者:郦嵘贵Just
在使用LLM-Foundry和Composer训练GPT-Neo-125M模型时,开发者可能会遇到训练过程卡在初始化阶段的问题。本文将从技术角度深入分析这一现象的原因,并提供有效的解决方案。
问题现象
当使用Docker镜像运行训练任务时,程序会在输出以下日志后停滞:
- 显示开始训练信息
- 打印精度配置(AMP_BF16)
- 输出训练配置信息
- 显示"Spinning the dataloaders"调试信息
- 出现关于num_canonical_nodes和shuffle_block_size的警告
值得注意的是,这个问题并非一开始就存在,而是在某次运行后突然出现,之后便无法正常训练。
根本原因分析
经过深入排查,这个问题与Streaming库的共享内存管理机制有关。当训练过程异常终止时,Streaming库可能会遗留一些共享内存段未被正确清理。这些残留的共享内存段会干扰后续的训练任务初始化过程,导致程序卡在数据加载器初始化阶段。
解决方案
要解决这个问题,可以手动清理残留的共享内存段:
- 首先确保所有训练进程和GPU进程都已终止
- 在Python环境中执行以下命令:
import streaming
streaming.base.util.clean_stale_shared_memory()
这个操作会清除所有陈旧的共享内存段,为新的训练任务提供干净的运行环境。
预防措施
为了避免类似问题再次发生,建议:
- 在训练脚本中添加异常处理逻辑,确保训练异常退出时能自动清理资源
- 定期检查系统共享内存状态
- 考虑在训练开始前自动执行共享内存清理操作
技术背景
Streaming库在处理大规模数据集时使用共享内存来提高性能。当使用py1e洗牌算法时,它会创建特定的内存结构来支持高效的数据洗牌操作。如果这些内存结构没有被正确释放,就会导致后续训练任务无法正常初始化。
理解这一机制对于深度学习工程师非常重要,特别是在使用LLM-Foundry等大规模语言模型训练框架时。正确的内存管理不仅能解决训练卡顿问题,还能提高整体训练稳定性。
总结
本文详细分析了LLM-Foundry训练卡顿问题的原因和解决方案。通过理解Streaming库的内存管理机制,开发者可以更有效地处理类似问题,确保训练任务顺利执行。记住在遇到训练停滞问题时,首先考虑共享内存清理这一简单而有效的解决方案。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146