使用ytdl-sub实现视频平台内容按关键词精准过滤下载
项目背景
ytdl-sub是一个强大的视频内容下载工具,它提供了丰富的预设配置和过滤功能,可以帮助用户实现自动化、精准化的视频下载管理。本文将详细介绍如何使用ytdl-sub的过滤功能来实现特定关键词组合的视频下载。
需求场景
假设我们需要从一个视频平台频道(如体育新闻频道)下载所有标题中同时包含"maple leafs"和"highlights"这两个关键词的视频。这种需求在体育赛事集锦、特定主题内容收集等场景下非常常见。
配置方案
基础配置
首先,我们需要在config.yml中设置基础的工作目录和预设:
presets:
Jellyfin TV Show by Date Temporary:
preset:
- "Jellyfin TV Show by Date"
- "Only Recent"
overrides:
tv_show_directory: "/video-temp"
only_recent_date_range: "1week"
这个配置做了两件事:
- 继承了Jellyfin TV Show by Date预设,用于组织下载的视频
- 使用Only Recent预设,限制只下载最近一周的视频
关键词过滤配置
在subscriptions.yml中,我们使用Filter Keywords预设来实现关键词过滤:
Jellyfin TV Show by Date Temporary | Filter Keywords:
= Ice Hocky:
"~NHL - Maple Leafs Highlights":
url: "https://www.example.com/@sportsnet"
title_include_eval: "ALL"
title_include_keywords:
- "maple leafs"
- "highlights"
关键点说明:
title_include_eval: "ALL"表示需要同时满足所有关键词条件title_include_keywords列表定义了需要同时出现在标题中的关键词- 波浪线(~)前缀表示这是一个过滤配置
工作原理
当ytdl-sub运行时,它会:
- 获取指定频道的最新视频列表
- 对每个视频标题应用过滤规则
- 只保留标题中同时包含"maple leafs"和"highlights"的视频
- 下载这些符合条件的视频
常见问题解决
-
过滤不生效:确保过滤配置是作为插件(plugin)而非覆盖变量(override)使用,正确的语法是在preset下直接定义filter_include,而不是在overrides中。
-
下载过多视频:检查title_include_eval的值是否为"ALL",这确保所有关键词都必须匹配。如果设置为"ANY",则任一关键词匹配就会被下载。
-
大小写敏感问题:ytdl-sub的过滤默认是大小写敏感的,如果需要不区分大小写,可以使用%lower函数处理标题。
高级技巧
-
排除特定内容:可以结合filter_exclude来排除某些特定内容,比如排除"trade"相关的视频。
-
多条件组合:使用%and、%or等逻辑运算符可以构建更复杂的过滤条件。
-
正则表达式:对于更复杂的匹配需求,可以使用正则表达式进行模式匹配。
总结
通过ytdl-sub的Filter Keywords预设,我们可以轻松实现基于多个关键词组合的视频过滤下载。这种方案不仅适用于体育赛事集锦,也可以应用于各种需要精准内容筛选的场景,如教育视频收集、特定主题内容归档等。合理配置过滤条件可以显著提高下载内容的精准度,减少后期手动筛选的工作量。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00