Apache Sling JCR Base 快速入门教程
1. 目录结构及介绍
以下为Apache Sling JCR Base项目的基本目录结构:
.
├── src # 源代码目录
│ ├── main # 主要源代码和资源文件
│ └── test # 测试相关代码
├── bnd # 使用BND工具相关的配置文件
└── pom.xml # Maven构建配置文件
src/main: 存放Java源代码和资源文件,主要实现项目的核心功能。src/test: 包含测试用例,用于验证项目功能。bnd: 该项目使用BND工具进行打包和依赖管理的配置。pom.xml: Maven项目对象模型,定义项目依赖、构建过程等。
2. 项目的启动文件介绍
由于sling-org-apache-sling-jcr-base是一个库项目,没有独立的启动文件。它被设计为在Apache Sling框架内部作为一个组件来集成使用。通常,你需要将此库添加到你的Apache Sling应用的类路径中,然后通过Sling的启动脚本来启动整个应用程序。如果你正在使用的是Sling Launchpad或其他类似的启动环境,你可以通过修改其依赖项来包含此库。
3. 项目的配置文件介绍
该项目不包含特定的配置文件,因为它的主要功能是在Sling环境中自动暴露JCR仓库。然而,在使用Sling和JCR时,你可能需要配置一些相关的设置,比如JCR仓库连接信息。这些配置通常位于Sling的应用配置或者Osgi配置中,例如jcr.repository.config或org.apache.sling.jcr.repository等服务配置。
例如,你可以在Osgi的配置管理界面(通常是通过Web管理界面如http://localhost:8080/system/console/configMgr)创建一个名为org.apache.sling.jcr.jackrabbit.JcrRepositoryService的配置,并填入如下参数:
repository.home: JCR仓库的根目录。defaultWorkspace: 默认的工作空间名称。loginAdministrative.login: 管理员登录的用户名。
此外,还可以通过在META-INF/services目录下创建服务定义文件,来定义并配置RepositoryMount服务,以便自定义JCR仓库的挂载点。
如果你需要更详细的配置说明,建议查看Apache Sling官方文档以及相关的JCR API文档。
示例配置文件(非项目内)
org.apache.sling.jcr.jackrabbit.JcrRepositoryService.repository.home=/path/to/repository
org.apache.sling.jcr.jackrabbit.JcrRepositoryService.defaultWorkspace=sampleworkspace
org.apache.sling.jcr.jackrabbit.JcrRepositoryService.loginAdministrative.login=admin
请注意,上述配置文件并不是项目的一部分,而是用于演示如何配置Sling以配合sling-org-apache-sling-jcr-base库使用。
这篇教程为你提供了关于Apache Sling JCR Base项目的简要介绍,包括目录结构、启动方式和基本配置。要深入了解和使用该项目,你应该结合Sling的开发环境和最佳实践来进行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00