Apache Sling JCR Base 快速入门教程
1. 目录结构及介绍
以下为Apache Sling JCR Base项目的基本目录结构:
.
├── src # 源代码目录
│ ├── main # 主要源代码和资源文件
│ └── test # 测试相关代码
├── bnd # 使用BND工具相关的配置文件
└── pom.xml # Maven构建配置文件
src/main: 存放Java源代码和资源文件,主要实现项目的核心功能。src/test: 包含测试用例,用于验证项目功能。bnd: 该项目使用BND工具进行打包和依赖管理的配置。pom.xml: Maven项目对象模型,定义项目依赖、构建过程等。
2. 项目的启动文件介绍
由于sling-org-apache-sling-jcr-base是一个库项目,没有独立的启动文件。它被设计为在Apache Sling框架内部作为一个组件来集成使用。通常,你需要将此库添加到你的Apache Sling应用的类路径中,然后通过Sling的启动脚本来启动整个应用程序。如果你正在使用的是Sling Launchpad或其他类似的启动环境,你可以通过修改其依赖项来包含此库。
3. 项目的配置文件介绍
该项目不包含特定的配置文件,因为它的主要功能是在Sling环境中自动暴露JCR仓库。然而,在使用Sling和JCR时,你可能需要配置一些相关的设置,比如JCR仓库连接信息。这些配置通常位于Sling的应用配置或者Osgi配置中,例如jcr.repository.config或org.apache.sling.jcr.repository等服务配置。
例如,你可以在Osgi的配置管理界面(通常是通过Web管理界面如http://localhost:8080/system/console/configMgr)创建一个名为org.apache.sling.jcr.jackrabbit.JcrRepositoryService的配置,并填入如下参数:
repository.home: JCR仓库的根目录。defaultWorkspace: 默认的工作空间名称。loginAdministrative.login: 管理员登录的用户名。
此外,还可以通过在META-INF/services目录下创建服务定义文件,来定义并配置RepositoryMount服务,以便自定义JCR仓库的挂载点。
如果你需要更详细的配置说明,建议查看Apache Sling官方文档以及相关的JCR API文档。
示例配置文件(非项目内)
org.apache.sling.jcr.jackrabbit.JcrRepositoryService.repository.home=/path/to/repository
org.apache.sling.jcr.jackrabbit.JcrRepositoryService.defaultWorkspace=sampleworkspace
org.apache.sling.jcr.jackrabbit.JcrRepositoryService.loginAdministrative.login=admin
请注意,上述配置文件并不是项目的一部分,而是用于演示如何配置Sling以配合sling-org-apache-sling-jcr-base库使用。
这篇教程为你提供了关于Apache Sling JCR Base项目的简要介绍,包括目录结构、启动方式和基本配置。要深入了解和使用该项目,你应该结合Sling的开发环境和最佳实践来进行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00