DB-GPT-Hub项目中Qwen模型LoRA微调常见问题解析
2025-07-08 02:16:09作者:冯爽妲Honey
问题背景
在使用DB-GPT-Hub项目对Qwen-14B-Chat模型进行LoRA微调时,部分开发者遇到了一个典型问题:训练完成后在输出目录中找不到预期的adapter_model.bin文件,导致无法进行后续的权重合并操作。这个问题在多个用户的实践中都有出现,值得深入分析和解决。
问题现象分析
当开发者按照标准流程完成Qwen模型的LoRA微调后,预期应该在output目录下的对应模型文件夹中生成adapter_model.bin文件。然而实际情况是,部分用户发现该文件缺失,只有adapter_model.safetensors文件存在。
根本原因
经过技术分析,这个问题源于模型保存格式的差异。新版本的transformers库和peft库默认使用safetensors格式保存LoRA适配器权重,而不是传统的bin格式。safetensors是Hugging Face推出的一种更安全、更高效的模型权重存储格式,但部分下游工具可能仍然依赖传统的bin格式。
解决方案
对于遇到此问题的开发者,可以采用以下两种解决方案:
方案一:格式转换
通过简单的Python脚本将safetensors格式转换为bin格式:
from safetensors.torch import load_file
import torch
lora_model_path = 'adapter_model.safetensors'
bin_model_path = 'adapter_model.bin'
torch.save(load_file(lora_model_path), bin_model_path)
这个方法已经经过实际验证,可以有效解决问题。
方案二:修改训练配置
在训练脚本中显式指定输出格式为bin格式,可以通过修改训练配置参数实现:
training_args = TrainingArguments(
output_dir=output_dir,
save_safetensors=False, # 禁用safetensors格式
# 其他参数...
)
技术延伸
理解这个问题的关键在于认识不同的模型权重存储格式:
- bin格式:传统的PyTorch二进制序列化格式,使用pickle进行序列化
- safetensors格式:新型的安全张量存储格式,具有以下优势:
- 更快的加载速度
- 不受pickle安全漏洞影响
- 支持零拷贝加载
最佳实践建议
- 在开始训练前,明确下游工具对权重格式的要求
- 对于新项目,建议优先使用safetensors格式
- 如果必须使用bin格式,可以在训练配置中提前设置
- 保持相关库(transformers, peft等)的版本更新,以获得最佳兼容性
总结
DB-GPT-Hub项目中Qwen模型LoRA微调时的权重格式问题,反映了深度学习工具链中格式兼容性的重要性。通过理解不同格式的特点和转换方法,开发者可以更灵活地处理类似问题。随着生态的发展,safetensors格式有望成为新的标准,但在过渡期间,掌握格式转换技巧仍然很有价值。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178