探索技术边界:ProcessInjection——进程注入艺术
项目介绍
ProcessInjection 是一个开源项目,专门研究和实现了各种进程注入技术。这个项目由一位在网络安全领域有着深厚积累的技术专家创建,旨在帮助开发者理解和掌握进程注入的概念,并提供了一系列的实际操作示例。无论你是逆向工程师、安全研究员还是对系统底层运作感兴趣的学习者,ProcessInjection 都是一个值得深入挖掘的宝贵资源。
项目技术分析
ProcessInjection 包含了几种不同的注入方法,从经典的 DLL 注入到更高级的反射注入和内存模块加载。每一种方法都通过精心设计的示例程序来展示,使你能轻松理解其工作原理。
-
经典注入 (Classic Injection): 传统的 DLL 注入方式,包括 CommonInjection 和 InjectionDLL 等,展示了如何将一个 DLL 加载到目标进程中执行。
-
Shellcode 注入: 利用 shellcode 实现注入,项目提供了 x64 架构下的示例。
-
反射注入 (Reflection Injection): 反射DLL注入,允许动态解析并加载 DLL,使得无需调用 LoadLibraryA 函数也能运行 DLL。
-
内存模块 (MEMORY MODULE): 在内存中动态创建和执行模块,通过 MemoryModule 和 MemroyInjectionDLL 进行实现。
-
过程空洞化 (Process Hollowing): 通过替换进程的映像节区以实现注入,项目支持 x86 和 x64 平台。
-
Gargoyle(石像鬼): 内存扫描逃避技术的 PoC,只适用于 x86 系统。
每个实现都附带了详细的分析,并链接到了相关的技术讨论,方便你进一步探索和学习。
应用场景和技术价值
进程注入技术在许多领域都有其独特的应用。例如,在软件测试中,它能帮助模拟特定环境,提高测试覆盖率;在恶意软件分析中,它可以帮助研究人员深入了解恶意行为;而在逆向工程中,它是剖析和控制目标程序的重要手段。当然,由于其潜在的安全风险,也可能被用于非法活动,因此,了解和掌握这些技术对于防御者的角色同样重要。
项目特点
- 全面性:覆盖了多种进程注入技术,从基础到进阶,满足不同层次的需求。
- 实践性强:每个技术都有实际的代码示例,方便你动手实践。
- 可扩展性:项目正在持续更新,更多先进的注入技术将会陆续加入。
- 学习资源丰富:每个实现都配有详细说明和参考链接,有助于深度学习。
- 跨平台支持:支持 x86 和 x64 操作系统,适应广泛。
如果你希望深入理解进程注入的奥秘,或者你需要在工作中使用这项技术,ProcessInjection 无疑是你理想的起点。立即开始探索,开启你的技术之旅吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00