探索技术边界:ProcessInjection——进程注入艺术
项目介绍
ProcessInjection
是一个开源项目,专门研究和实现了各种进程注入技术。这个项目由一位在网络安全领域有着深厚积累的技术专家创建,旨在帮助开发者理解和掌握进程注入的概念,并提供了一系列的实际操作示例。无论你是逆向工程师、安全研究员还是对系统底层运作感兴趣的学习者,ProcessInjection
都是一个值得深入挖掘的宝贵资源。
项目技术分析
ProcessInjection
包含了几种不同的注入方法,从经典的 DLL 注入到更高级的反射注入和内存模块加载。每一种方法都通过精心设计的示例程序来展示,使你能轻松理解其工作原理。
-
经典注入 (Classic Injection): 传统的 DLL 注入方式,包括 CommonInjection 和 InjectionDLL 等,展示了如何将一个 DLL 加载到目标进程中执行。
-
Shellcode 注入: 利用 shellcode 实现注入,项目提供了 x64 架构下的示例。
-
反射注入 (Reflection Injection): 反射DLL注入,允许动态解析并加载 DLL,使得无需调用 LoadLibraryA 函数也能运行 DLL。
-
内存模块 (MEMORY MODULE): 在内存中动态创建和执行模块,通过 MemoryModule 和 MemroyInjectionDLL 进行实现。
-
过程空洞化 (Process Hollowing): 通过替换进程的映像节区以实现注入,项目支持 x86 和 x64 平台。
-
Gargoyle(石像鬼): 内存扫描逃避技术的 PoC,只适用于 x86 系统。
每个实现都附带了详细的分析,并链接到了相关的技术讨论,方便你进一步探索和学习。
应用场景和技术价值
进程注入技术在许多领域都有其独特的应用。例如,在软件测试中,它能帮助模拟特定环境,提高测试覆盖率;在恶意软件分析中,它可以帮助研究人员深入了解恶意行为;而在逆向工程中,它是剖析和控制目标程序的重要手段。当然,由于其潜在的安全风险,也可能被用于非法活动,因此,了解和掌握这些技术对于防御者的角色同样重要。
项目特点
- 全面性:覆盖了多种进程注入技术,从基础到进阶,满足不同层次的需求。
- 实践性强:每个技术都有实际的代码示例,方便你动手实践。
- 可扩展性:项目正在持续更新,更多先进的注入技术将会陆续加入。
- 学习资源丰富:每个实现都配有详细说明和参考链接,有助于深度学习。
- 跨平台支持:支持 x86 和 x64 操作系统,适应广泛。
如果你希望深入理解进程注入的奥秘,或者你需要在工作中使用这项技术,ProcessInjection
无疑是你理想的起点。立即开始探索,开启你的技术之旅吧!
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









