MMseqs2:超快速且敏感的序列搜索与聚类套件
2026-01-16 10:41:20作者:温艾琴Wonderful
项目介绍
MMseqs2(Many-against-Many sequence searching)是一款用于搜索和聚类大规模蛋白质和核酸序列集的开源软件套件。作为GPL许可的软件,MMseqs2采用C++实现,支持Linux、MacOS以及通过cygwin的Windows(测试版)。该软件设计用于在多核和服务器上运行,展现出极佳的可扩展性。MMseqs2的运行速度比BLAST快10000倍,而在速度提升100倍的情况下,其敏感度几乎与BLAST相同。此外,它进行轮廓搜索时的敏感度与PSI-BLAST相当,但速度是其400倍以上。
项目技术分析
MMseqs2的核心优势在于其卓越的性能和敏感度。通过采用先进的算法和并行计算技术,MMseqs2能够在极短的时间内处理海量数据。其支持多种平台和架构,包括AMD和Intel 64位系统、ARM64以及PPC64LE系统,确保了广泛的兼容性和可用性。此外,MMseqs2提供了丰富的安装选项,包括源码编译、静态二进制下载、Homebrew、conda和Docker,简化了部署过程。
项目及技术应用场景
MMseqs2的应用场景广泛,涵盖了生物信息学的多个领域:
- 序列搜索:快速准确地搜索大规模序列数据库,适用于基因组学、蛋白质组学研究。
- 序列聚类:对蛋白质和核酸序列进行高效聚类,有助于功能注释和进化分析。
- 分类学分配:为宏基因组序列分配分类学标签,支持环境微生物学研究。
项目特点
- 超快速:MMseqs2的运行速度远超传统工具,大幅缩短数据处理时间。
- 高敏感度:在保持高速的同时,不牺牲搜索的敏感度,确保结果的准确性。
- 多平台支持:支持多种操作系统和硬件架构,适应不同的计算环境。
- 易于安装:提供多种安装方式,简化用户部署流程。
- 丰富的文档和社区支持:详细的文档、教程和活跃的社区支持,帮助用户快速上手和解决问题。
MMseqs2是生物信息学研究和应用的强大工具,无论是学术研究还是工业应用,都能提供卓越的性能和便利。立即尝试MMseqs2,体验其带来的革命性速度和效率提升!
参考文献:
- Steinegger M and Soeding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology, doi: 10.1038/nbt.3988 (2017).
- Steinegger M and Soeding J. Clustering huge protein sequence sets in linear time. Nature Communications, doi: 10.1038/s41467-018-04964-5 (2018).
- Mirdita M, Steinegger M and Soeding J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics, doi: 10.1093/bioinformatics/bty1057 (2019).
- Mirdita M, Steinegger M, Breitwieser F, Soding J, Levy Karin E: Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics, doi: 10.1093/bioinformatics/btab184 (2021).
安装指南:
- 通过Homebrew安装:
brew install mmseqs2 - 通过conda安装:
conda install -c conda-forge -c bioconda mmseqs2 - 通过Docker安装:
docker pull ghcr.io/soedinglab/mmseqs2 - 静态构建(推荐):
wget https://mmseqs.com/latest/mmseqs-linux-avx2.tar.gz; tar xvfz mmseqs-linux-avx2.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH
文档与支持:
- GitHub Wiki
- [用户指南PDF](https://mmseqs.com/latest/us
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178