Torchmetrics中R2Score计算差异的技术解析
2025-07-03 14:40:39作者:劳婵绚Shirley
概述
在使用Torchmetrics进行R2分数计算时,开发者可能会遇到一个常见问题:通过.test()方法获得的R2分数与直接使用.predict()后计算的结果不一致。本文将深入分析这一现象背后的技术原因,并给出正确的使用方法。
问题现象
在PyTorch Lightning框架中,开发者通常会在测试步骤中这样计算R2分数:
def test_step(self, batch, batch_idx):
predictions = self(batch[:, :-1].float()).squeeze(-1)
targets = batch[:, -1].float()
score_r2 = self.test_r2(predictions, targets)
self.log("test_r2", score_r2, on_epoch=True)
return score_r2
然而,这样计算得到的R2分数与以下两种方式的结果不同:
- 使用
trainer.test()后从结果中获取的R2分数 - 使用
trainer.predict()获取所有预测值后,再用Torchmetrics或scikit-learn直接计算的R2分数
原因分析
R2分数的数学本质
R2分数(决定系数)的计算公式为:
R2 = 1 - SS_res/SS_tot
其中:
- SS_res是残差平方和(预测值与真实值差的平方和)
- SS_tot是总平方和(真实值与其均值的差的平方和)
关键点在于:R2分数不能简单地通过批次的平均值来聚合,因为SS_res和SS_tot需要在所有数据上统一计算。
Lightning日志机制的影响
当使用self.log("test_r2", score_r2, on_epoch=True)时,Lightning默认会对各批次的score_r2值取平均。这种聚合方式对于R2分数是不正确的,因为:
- 每个批次的R2分数是基于该批次自身的均值计算的
- 整体R2分数应该基于全局均值计算
正确与错误方法的对比
错误方法:
score_r2 = self.test_r2(predictions, targets)
self.log("test_r2", score_r2, on_epoch=True)
- 先计算批次的R2分数
- 然后对这些分数取平均
正确方法:
self.test_r2(predictions, targets)
self.log("test_r2", self.test_r2, on_epoch=True)
- 更新度量对象内部状态(累加SS_res和SS_tot)
- 最后在所有数据上统一计算R2分数
解决方案
推荐做法
- 直接传递度量对象给log方法:
self.test_r2(predictions, targets)
self.log("test_r2", self.test_r2, on_epoch=True)
- 使用Torchmetrics的自动聚合功能: Torchmetrics的度量对象内部会自动维护必要的统计量(如平方和),并在epoch结束时正确计算全局指标。
为什么predict方法结果正确
当使用trainer.predict()后手动计算R2分数时,由于所有数据一次性处理:
- 计算的是全局的R2分数
- 没有批次聚合的问题
- 因此与scikit-learn的结果一致
最佳实践建议
-
对于需要全局计算的指标(如R2分数、AUC等),总是传递度量对象本身给
log方法,而不是传递计算结果。 -
理解不同指标的聚合特性:
- 可平均指标(如准确率、MSE):可以直接对批次结果取平均
- 不可平均指标(如R2、AUC):需要全局计算
-
在调试时,可以通过比较
predict结果和test结果来验证指标计算的正确性。
总结
R2分数计算差异的问题源于指标聚合方式的误解。通过理解R2分数的数学原理和Torchmetrics的内部机制,开发者可以避免这一常见陷阱,确保模型评估指标的准确性。记住关键原则:对于需要全局统计的指标,总是让度量对象自己处理聚合逻辑。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1