MyBatis-Plus 数据权限插件重复拼接SQL问题解析
问题背景
在使用MyBatis-Plus框架进行开发时,开发者可能会遇到数据权限插件(MultiDataPermissionHandler)重复拼接SQL语句的问题。这个问题通常表现为在SQL查询条件中,相同的条件被重复拼接多次,导致查询结果异常或性能下降。
问题现象
当使用MyBatis-Plus的数据权限拦截器(DataPermissionInterceptor)时,如果权限处理逻辑返回null而不是原始的where条件,系统会自动将原始的where条件重复拼接到SQL语句中。例如:
SELECT id, user_id FROM t_user
WHERE deleted = 1 AND (username = 'system')
AND deleted = 1 AND (username = NULL);
可以看到,deleted = 1这个条件被重复拼接了两次,这显然不是开发者期望的结果。
问题原因
这个问题的根本原因在于数据权限处理器的实现逻辑。在MyBatis-Plus中,当数据权限处理器返回null时,框架会保留原始的where条件。如果同时又在SQL中手动添加了相同的条件,就会导致条件重复。
具体到代码层面,问题出在getSqlSegment方法的返回值处理上。当不需要进行数据权限过滤时,正确的做法是返回原始的where条件,而不是返回null。
解决方案
要解决这个问题,开发者需要确保在不需要进行数据权限过滤的情况下,返回原始的where条件,而不是返回null。以下是正确的实现方式:
@Override
public Expression getSqlSegment(Table table, Expression where, String mappedStatementId) {
String methodName = StringUtils.substringAfterLast(mappedStatementId, ".");
try {
Class<?> clazz = Class.forName(mappedStatementId.substring(0, mappedStatementId.lastIndexOf(".")));
Method[] methods = clazz.getDeclaredMethods();
// 如果不需要过滤,直接返回原始where条件
if (!shouldFilter(methodName, methods)) {
return where;
}
Method method = clazz.getDeclaredMethod(methodName);
DataPermission dataPermission = method.getAnnotation(DataPermission.class);
log.info("数据权限过滤 Method -> {}", mappedStatementId);
return dataPermissionSql(table, where, dataPermission);
} catch (Exception e) {
log.error("数据权限过滤异常,{}", e.getMessage());
// 发生异常时也返回原始where条件
return where;
}
}
最佳实践
-
明确返回条件:在数据权限处理器中,始终明确返回有效的Expression对象,避免返回null。
-
异常处理:在catch块中,也应该返回原始的where条件,而不是返回null或抛出异常。
-
条件合并:如果需要添加额外的过滤条件,应该将新条件与原始条件合并,而不是完全替换。
-
日志记录:在关键决策点添加适当的日志记录,便于调试和问题排查。
总结
MyBatis-Plus的数据权限功能非常强大,但在使用时需要注意正确处理where条件的返回。通过遵循上述解决方案和最佳实践,开发者可以避免SQL条件重复拼接的问题,确保数据权限功能正常工作。记住,关键在于理解框架的工作机制,并在适当的时候返回正确的条件表达式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00