FacePSNet 开源项目使用教程
2024-09-20 07:16:25作者:蔡丛锟
1. 项目介绍
FacePSNet 是一个用于面部细节恢复的轻量级光度立体网络项目。该项目基于 CVPR 2020 的论文 "Lightweight Photometric Stereo for Facial Details Recovery" 开发,旨在通过光度立体技术从面部图像中恢复高精度的三维面部模型。FacePSNet 提供了源代码和训练好的模型,适用于学术研究和商业用途。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- Ubuntu
- CUDA-10.1
- Python 3.7
- C++ 库:OpenCV, Eigen
- Python 包:PyTorch(=1.3.1), Numpy, OpenCV, gen_normal_mask
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/Juyong/FacePSNet.git cd FacePSNet
-
安装第三方包
gen_normal_mask
:cd gen_normal_mask python setup.py install
2.3 测试示例
-
准备输入图像: 将您的输入图像放置在
sample/
目录下,例如sample/image1.jpg
,sample/image2.jpg
,sample/image3.jpg
。 -
运行测试脚本:
bash test_sample.sh
-
查看输出结果: 输出结果将保存在
output/
目录下,包括normal.png
,mask.jpg
, 和pca_pose_cam.txt
。
2.4 自定义测试
如果您想测试自己的图像,请按照以下步骤操作:
- 创建一个新的目录来存储您的输入图像。
- 创建一个文本文件
sample_imgs.txt
,列出所有输入图像的路径。 - 运行以下命令:
例如:python main.py [gpu_id] [list] [output_path]
python main.py 0 sample_imgs.txt output/
3. 应用案例和最佳实践
3.1 应用案例
FacePSNet 可以应用于以下场景:
- 面部识别:通过恢复高精度的三维面部模型,提高面部识别的准确性。
- 虚拟现实:在虚拟现实中创建更逼真的面部表情和动画。
- 医学研究:用于面部畸形研究和治疗方案的制定。
3.2 最佳实践
- 数据预处理:确保输入图像的质量和光照条件一致,以获得最佳的恢复效果。
- 模型优化:根据具体应用场景,调整网络结构和参数,以提高模型的性能。
4. 典型生态项目
FacePSNet 可以与其他面部处理项目结合使用,例如:
- OpenCV:用于图像处理和预处理。
- PyTorch:用于深度学习模型的训练和推理。
- Eigen:用于矩阵运算和几何计算。
通过这些生态项目的结合,可以进一步扩展 FacePSNet 的功能和应用范围。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133