CUTLAS项目中稀疏GEMM性能优化问题分析
2025-05-31 02:21:09作者:吴年前Myrtle
背景介绍
在GPU加速计算领域,GEMM(通用矩阵乘法)是最核心的计算操作之一。NVIDIA的CUTLAS项目提供了高度优化的GEMM实现,包括对稀疏矩阵运算的支持。然而在实际应用中,开发者发现稀疏GEMM在某些情况下的性能表现反而不如密集GEMM,这引发了我们对稀疏计算实现细节的深入探讨。
问题现象
在H100和A100 GPU平台上进行的基准测试显示,当矩阵尺寸为M=768、N=4096、K=4096时:
- H100上密集GEMM最佳时间为0.0457472ms,而稀疏GEMM为0.0742464ms
- A100上密集GEMM最佳时间为0.105734ms,稀疏GEMM为0.150016ms
这种性能差异在多个矩阵尺寸下都存在,特别是在batch_size=1和2的情况下表现尤为明显。
技术分析
架构差异的影响
H100与A100的架构差异是导致性能差异的关键因素之一。H100采用了新一代的Hopper架构,而A100采用的是Ampere架构。目前CUTLAS对H100的稀疏GEMM优化尚未完成,稀疏内核实际上是基于Ampere架构重新编译的,这解释了H100上较大的性能差距。
分块尺寸的选择
性能分析表明,稀疏GEMM默认使用了较小的分块尺寸(64x128),而密集GEMM则使用了较大的分块(256x128)。这种分块策略的差异直接影响:
- 计算效率:大分块能更好地利用GPU的计算单元
- 内存访问效率:大分块减少全局内存访问次数
- 指令级并行:大分块提供更多指令级并行机会
数据类型与布局
测试中使用了BF16数据类型,这种半精度浮点格式在Ampere和Hopper架构上都有专门优化。然而稀疏计算对数据类型和内存布局更为敏感:
- 对于F32、S4、S8等数据类型需要使用TN(行x列)布局
- 不同数据类型的计算单元利用率不同
- 稀疏格式的压缩和解压开销需要考虑
解决方案与优化建议
显式指定分块尺寸
通过CMake配置显式启用特定分块尺寸的稀疏内核:
-DCUTLASS_LIBRARY_KERNELS=bf16_s16832spgemm_bf16_*_tt_align8
手动选择最优配置
对于特定问题规模,可以尝试:
- 128x128分块:平衡计算和内存访问
- 256x128分块:提高计算强度
- 128x256分块:优化内存访问模式
等待架构优化
NVIDIA已计划在2024年中为Hopper架构提供专门的稀疏GEMM优化,届时H100上的性能差距有望缩小。
实际应用建议
- 对于A100平台,可以尝试不同分块配置找到最优解
- 对于H100平台,目前建议优先使用密集GEMM
- 关注CUTLAS更新,及时获取最新的稀疏优化
- 对于特定应用场景,考虑混合使用稀疏和密集计算
总结
稀疏计算在理论上有望带来性能提升,但实际效果高度依赖于硬件架构、实现优化和具体问题特征。理解底层实现细节和硬件特性是获得最佳性能的关键。随着NVIDIA对Hopper架构稀疏计算的持续优化,未来稀疏GEMM的性能表现值得期待。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328