CUTLAS项目中稀疏GEMM性能优化问题分析
2025-05-31 09:45:58作者:吴年前Myrtle
背景介绍
在GPU加速计算领域,GEMM(通用矩阵乘法)是最核心的计算操作之一。NVIDIA的CUTLAS项目提供了高度优化的GEMM实现,包括对稀疏矩阵运算的支持。然而在实际应用中,开发者发现稀疏GEMM在某些情况下的性能表现反而不如密集GEMM,这引发了我们对稀疏计算实现细节的深入探讨。
问题现象
在H100和A100 GPU平台上进行的基准测试显示,当矩阵尺寸为M=768、N=4096、K=4096时:
- H100上密集GEMM最佳时间为0.0457472ms,而稀疏GEMM为0.0742464ms
- A100上密集GEMM最佳时间为0.105734ms,稀疏GEMM为0.150016ms
这种性能差异在多个矩阵尺寸下都存在,特别是在batch_size=1和2的情况下表现尤为明显。
技术分析
架构差异的影响
H100与A100的架构差异是导致性能差异的关键因素之一。H100采用了新一代的Hopper架构,而A100采用的是Ampere架构。目前CUTLAS对H100的稀疏GEMM优化尚未完成,稀疏内核实际上是基于Ampere架构重新编译的,这解释了H100上较大的性能差距。
分块尺寸的选择
性能分析表明,稀疏GEMM默认使用了较小的分块尺寸(64x128),而密集GEMM则使用了较大的分块(256x128)。这种分块策略的差异直接影响:
- 计算效率:大分块能更好地利用GPU的计算单元
- 内存访问效率:大分块减少全局内存访问次数
- 指令级并行:大分块提供更多指令级并行机会
数据类型与布局
测试中使用了BF16数据类型,这种半精度浮点格式在Ampere和Hopper架构上都有专门优化。然而稀疏计算对数据类型和内存布局更为敏感:
- 对于F32、S4、S8等数据类型需要使用TN(行x列)布局
- 不同数据类型的计算单元利用率不同
- 稀疏格式的压缩和解压开销需要考虑
解决方案与优化建议
显式指定分块尺寸
通过CMake配置显式启用特定分块尺寸的稀疏内核:
-DCUTLASS_LIBRARY_KERNELS=bf16_s16832spgemm_bf16_*_tt_align8
手动选择最优配置
对于特定问题规模,可以尝试:
- 128x128分块:平衡计算和内存访问
- 256x128分块:提高计算强度
- 128x256分块:优化内存访问模式
等待架构优化
NVIDIA已计划在2024年中为Hopper架构提供专门的稀疏GEMM优化,届时H100上的性能差距有望缩小。
实际应用建议
- 对于A100平台,可以尝试不同分块配置找到最优解
- 对于H100平台,目前建议优先使用密集GEMM
- 关注CUTLAS更新,及时获取最新的稀疏优化
- 对于特定应用场景,考虑混合使用稀疏和密集计算
总结
稀疏计算在理论上有望带来性能提升,但实际效果高度依赖于硬件架构、实现优化和具体问题特征。理解底层实现细节和硬件特性是获得最佳性能的关键。随着NVIDIA对Hopper架构稀疏计算的持续优化,未来稀疏GEMM的性能表现值得期待。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322