CUTLAS项目中稀疏GEMM性能优化问题分析
2025-05-31 18:41:01作者:吴年前Myrtle
背景介绍
在GPU加速计算领域,GEMM(通用矩阵乘法)是最核心的计算操作之一。NVIDIA的CUTLAS项目提供了高度优化的GEMM实现,包括对稀疏矩阵运算的支持。然而在实际应用中,开发者发现稀疏GEMM在某些情况下的性能表现反而不如密集GEMM,这引发了我们对稀疏计算实现细节的深入探讨。
问题现象
在H100和A100 GPU平台上进行的基准测试显示,当矩阵尺寸为M=768、N=4096、K=4096时:
- H100上密集GEMM最佳时间为0.0457472ms,而稀疏GEMM为0.0742464ms
- A100上密集GEMM最佳时间为0.105734ms,稀疏GEMM为0.150016ms
这种性能差异在多个矩阵尺寸下都存在,特别是在batch_size=1和2的情况下表现尤为明显。
技术分析
架构差异的影响
H100与A100的架构差异是导致性能差异的关键因素之一。H100采用了新一代的Hopper架构,而A100采用的是Ampere架构。目前CUTLAS对H100的稀疏GEMM优化尚未完成,稀疏内核实际上是基于Ampere架构重新编译的,这解释了H100上较大的性能差距。
分块尺寸的选择
性能分析表明,稀疏GEMM默认使用了较小的分块尺寸(64x128),而密集GEMM则使用了较大的分块(256x128)。这种分块策略的差异直接影响:
- 计算效率:大分块能更好地利用GPU的计算单元
- 内存访问效率:大分块减少全局内存访问次数
- 指令级并行:大分块提供更多指令级并行机会
数据类型与布局
测试中使用了BF16数据类型,这种半精度浮点格式在Ampere和Hopper架构上都有专门优化。然而稀疏计算对数据类型和内存布局更为敏感:
- 对于F32、S4、S8等数据类型需要使用TN(行x列)布局
- 不同数据类型的计算单元利用率不同
- 稀疏格式的压缩和解压开销需要考虑
解决方案与优化建议
显式指定分块尺寸
通过CMake配置显式启用特定分块尺寸的稀疏内核:
-DCUTLASS_LIBRARY_KERNELS=bf16_s16832spgemm_bf16_*_tt_align8
手动选择最优配置
对于特定问题规模,可以尝试:
- 128x128分块:平衡计算和内存访问
- 256x128分块:提高计算强度
- 128x256分块:优化内存访问模式
等待架构优化
NVIDIA已计划在2024年中为Hopper架构提供专门的稀疏GEMM优化,届时H100上的性能差距有望缩小。
实际应用建议
- 对于A100平台,可以尝试不同分块配置找到最优解
- 对于H100平台,目前建议优先使用密集GEMM
- 关注CUTLAS更新,及时获取最新的稀疏优化
- 对于特定应用场景,考虑混合使用稀疏和密集计算
总结
稀疏计算在理论上有望带来性能提升,但实际效果高度依赖于硬件架构、实现优化和具体问题特征。理解底层实现细节和硬件特性是获得最佳性能的关键。随着NVIDIA对Hopper架构稀疏计算的持续优化,未来稀疏GEMM的性能表现值得期待。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
411
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
604
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895