PostgreSQL语法解析器中PL/SQL规则导致的歧义问题分析
在PostgreSQL语法解析器的开发过程中,我们发现了一个关于列标签(collabel)解析的歧义问题。这个问题源于PostgreSQL语法中混入了PL/SQL规则,导致词法分析器无法正确区分某些关键字。
问题背景
在解析类似SELECT 'trailing' AS first;
这样的SQL语句时,词法分析器对first
这个标识符的解析存在三种可能的路径:
- 作为普通标识符(identifier)解析,然后匹配PL/SQL非保留关键字(FIRST_P)
- 直接作为PL/SQL非保留关键字(FIRST_P)解析
- 作为PostgreSQL非保留关键字(FIRST_P)解析
这种歧义性会导致解析器无法确定正确的语法树结构,影响后续的语义分析和代码生成。
根本原因分析
通过对原始PostgreSQL的yacc语法文件(gram.y)和ANTLR语法文件的对比分析,我们发现:
-
在原始yacc语法中,关键字分类(col_name_keyword、reserved_keyword等)的符号集合是完全互斥的(disjoint),这是语法解析器正常工作的重要前提。
-
但在ANTLR版本的语法中,PL/SQL非保留关键字(plsql_unreserved_keyword)集合与PostgreSQL原有的关键字集合存在大量重叠,破坏了符号集合的互斥性。
-
这种设计违反了ANTLR解析器对符号分类的基本原则,因为ANTLR要求同一语法规则中的备选路径必须能够通过词法分析明确区分。
解决方案
要解决这个问题,我们需要:
-
完全移除PostgreSQL语法中的PL/SQL规则,因为这些规则本应属于一个独立的语法解析器。
-
为PL/pgSQL创建单独的语法定义文件,参考PostgreSQL源码中的pl_gram.y文件结构。
-
确保PostgreSQL主语法中的关键字分类保持互斥性,与原始yacc语法保持一致。
技术实现细节
在PostgreSQL的原始实现中,词法分析器和语法分析器是严格分离的:
- 词法分析阶段会明确标记每个关键字的类型
- 语法分析阶段根据这些标记进行精确的语法规则匹配
而ANTLR的语法定义方式将词法和语法规则混合在一起,当两个语法(PostgreSQL和PL/SQL)合并时,它们的词法规则也会被合并,导致关键字分类混乱。
最佳实践建议
对于类似需要合并多个相关语法的场景,建议:
- 保持每个语法解析器的独立性,不要简单合并词法规则
- 对于嵌入式语言(如PL/SQL嵌入在PostgreSQL中),应该实现为独立的解析阶段
- 在语法设计时严格验证符号集合的互斥性
- 为每个语法定义明确的起始规则和终止标记(如EOF)
通过这种方式,可以避免类似的语法歧义问题,同时保持各个语法解析器的清晰边界和正确性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









