PostgreSQL语法解析器中PL/SQL规则导致的歧义问题分析
在PostgreSQL语法解析器的开发过程中,我们发现了一个关于列标签(collabel)解析的歧义问题。这个问题源于PostgreSQL语法中混入了PL/SQL规则,导致词法分析器无法正确区分某些关键字。
问题背景
在解析类似SELECT 'trailing' AS first;这样的SQL语句时,词法分析器对first这个标识符的解析存在三种可能的路径:
- 作为普通标识符(identifier)解析,然后匹配PL/SQL非保留关键字(FIRST_P)
- 直接作为PL/SQL非保留关键字(FIRST_P)解析
- 作为PostgreSQL非保留关键字(FIRST_P)解析
这种歧义性会导致解析器无法确定正确的语法树结构,影响后续的语义分析和代码生成。
根本原因分析
通过对原始PostgreSQL的yacc语法文件(gram.y)和ANTLR语法文件的对比分析,我们发现:
-
在原始yacc语法中,关键字分类(col_name_keyword、reserved_keyword等)的符号集合是完全互斥的(disjoint),这是语法解析器正常工作的重要前提。
-
但在ANTLR版本的语法中,PL/SQL非保留关键字(plsql_unreserved_keyword)集合与PostgreSQL原有的关键字集合存在大量重叠,破坏了符号集合的互斥性。
-
这种设计违反了ANTLR解析器对符号分类的基本原则,因为ANTLR要求同一语法规则中的备选路径必须能够通过词法分析明确区分。
解决方案
要解决这个问题,我们需要:
-
完全移除PostgreSQL语法中的PL/SQL规则,因为这些规则本应属于一个独立的语法解析器。
-
为PL/pgSQL创建单独的语法定义文件,参考PostgreSQL源码中的pl_gram.y文件结构。
-
确保PostgreSQL主语法中的关键字分类保持互斥性,与原始yacc语法保持一致。
技术实现细节
在PostgreSQL的原始实现中,词法分析器和语法分析器是严格分离的:
- 词法分析阶段会明确标记每个关键字的类型
- 语法分析阶段根据这些标记进行精确的语法规则匹配
而ANTLR的语法定义方式将词法和语法规则混合在一起,当两个语法(PostgreSQL和PL/SQL)合并时,它们的词法规则也会被合并,导致关键字分类混乱。
最佳实践建议
对于类似需要合并多个相关语法的场景,建议:
- 保持每个语法解析器的独立性,不要简单合并词法规则
- 对于嵌入式语言(如PL/SQL嵌入在PostgreSQL中),应该实现为独立的解析阶段
- 在语法设计时严格验证符号集合的互斥性
- 为每个语法定义明确的起始规则和终止标记(如EOF)
通过这种方式,可以避免类似的语法歧义问题,同时保持各个语法解析器的清晰边界和正确性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00