NuScenes-devkit中激光雷达点云坐标变换的正确实现方法
2025-07-01 13:48:45作者:牧宁李
背景介绍
在自动驾驶领域,NuScenes数据集是一个重要的多模态数据集,提供了丰富的传感器数据。其中激光雷达(LiDAR)点云数据的处理尤为关键,而正确实现点云坐标系之间的转换是进行点云拼接、地图构建等任务的基础。
问题发现
在使用NuScenes-devkit处理激光雷达数据时,开发者可能会遇到点云拼接不准确的问题。具体表现为当尝试将不同时间点的点云转换到同一坐标系下时,点云无法正确对齐,出现明显的错位现象。
问题分析
通过深入分析发现,问题主要出在坐标变换的实现上。原始代码中存在以下关键错误:
- 错误地使用了逆变换矩阵
- 变换矩阵的乘法顺序不正确
- 对坐标系转换的理解存在偏差
正确实现方法
正确的坐标变换实现应遵循以下步骤:
- 获取传感器到自车的变换矩阵:直接从标定数据中获取ego到lidar的变换矩阵
- 获取世界坐标系到自车的变换矩阵:从ego_pose数据中获取world到ego的变换矩阵
- 组合变换矩阵:通过矩阵乘法将两个变换组合起来
具体实现代码如下:
# 获取标定数据
lidar2ego = nusc.get('calibrated_sensor', sample_data['calibrated_sensor_token'])
# 获取位姿数据
ego2world = nusc.get('ego_pose', sample_data['ego_pose_token'])
# 构建变换矩阵
ego2lidar_np = transform_matrix(lidar2ego['translation'], Quaternion(lidar2ego['rotation']))
world2ego_np = transform_matrix(ego2world['translation'], Quaternion(ego2world['rotation']))
# 组合变换矩阵
pose = np.dot(world2ego_np, ego2lidar_np)
点云拼接实现
在正确获取变换矩阵后,点云拼接的实现如下:
# 获取两个时间点的点云和位姿
pc0, pose0 = get_data(sample_data_lst[0], nusc)
pc1, pose1 = get_data(sample_data_lst[10], nusc)
# 创建点云对象并着色
pcd0 = o3d.geometry.PointCloud()
pcd0.points = o3d.utility.Vector3dVector(pc0[:, :3])
pcd0.paint_uniform_color([0.0, 1.0, 0.0])
pcd1 = o3d.geometry.PointCloud()
pcd1.points = o3d.utility.Vector3dVector(pc1[:, :3])
pcd1.paint_uniform_color([1.0, 0.0, 0.0])
# 计算相对变换并应用
ego_motion = np.linalg.inv(pose0) @ pose1 # 计算从点云1到点云0的变换
pcd1.transform(ego_motion)
# 可视化结果
o3d.visualization.draw_geometries([pcd0, pcd1])
技术要点
-
坐标系理解:明确各坐标系之间的关系是关键。NuScenes中涉及的主要坐标系包括:
- 世界坐标系(world)
- 自车坐标系(ego)
- 传感器坐标系(lidar)
-
变换顺序:正确的变换顺序应该是从lidar→ego→world,或者反向变换时使用逆矩阵。
-
矩阵运算:注意矩阵乘法的顺序和逆矩阵的使用,这是导致错误的主要原因。
实际应用
这种正确的坐标变换方法可以应用于多种场景:
- 点云地图构建:通过拼接多帧点云创建高精度地图
- 目标跟踪:在不同时间点间对齐点云以跟踪动态物体
- 定位算法:基于点云匹配的定位系统需要精确的坐标变换
总结
在NuScenes-devkit中处理激光雷达数据时,正确的坐标变换实现至关重要。通过理解各坐标系之间的关系,正确组合变换矩阵,可以避免点云拼接不准确的问题。本文提供的实现方法已经过验证,能够正确对齐不同时间点的点云数据,为后续的感知和定位算法提供可靠的基础。
对于开发者来说,理解传感器数据的坐标系关系是处理多模态数据的第一步,也是构建可靠自动驾驶系统的基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869