LLM-Guard项目API接口文档与调试技巧解析
LLM-Guard作为一个开源的安全防护工具,其API接口设计遵循了现代Web服务的标准规范。本文将详细介绍如何获取API文档以及调试技巧,帮助开发者快速集成该工具到现有系统中。
API文档获取方式
LLM-Guard项目提供了两种获取API文档的途径:
-
通过环境变量开启调试模式:设置环境变量
LOG_LEVEL为DEBUG后,系统会自动启用Swagger UI界面。这是开发过程中最便捷的文档查看方式,可以实时查看所有可用接口及其参数。 -
查阅官方文档:项目维护团队在官方文档中提供了完整的API Schema说明,包含每个端点的详细描述、请求参数和响应格式。
核心API接口分析
LLM-Guard的API主要围绕以下几个核心功能设计:
-
文本安全检测接口:POST类型的端点,接收待检测的文本内容,返回安全评估结果。该接口通常需要以下参数:
- 原始文本内容
- 可选的检测配置参数
- 上下文信息(如用户身份等)
-
配置管理接口:允许动态调整防护策略的接口集,包括:
- 获取当前配置
- 更新检测规则
- 重置为默认配置
-
系统状态监控接口:提供服务的健康状态、性能指标等运维相关信息。
最佳实践建议
对于Python开发者,集成LLM-Guard API时应注意:
-
环境配置:建议使用Python的
dotenv库管理环境变量,特别是LOG_LEVEL这类敏感配置。 -
请求处理:使用
requests库时,建议实现重试机制和超时处理,确保服务的可靠性。 -
错误处理:API可能返回各种错误代码,应妥善处理4xx和5xx系列错误。
-
性能优化:对于高频调用的场景,考虑实现本地缓存或批量请求机制。
调试技巧
-
本地测试:在开发环境设置
LOG_LEVEL=DEBUG后,可以直接访问/docs路径查看交互式API文档。 -
日志分析:DEBUG级别的日志会输出详细的请求处理过程,有助于定位问题。
-
单元测试:建议为API调用编写完整的单元测试,覆盖各种边界情况。
通过以上方法和技巧,开发者可以高效地将LLM-Guard集成到现有聊天应用中,为系统提供可靠的内容安全防护能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00