ChatGLM3微调实践:PtuningV2与模型加载问题解析
2025-05-16 22:20:48作者:滕妙奇
前言
在大型语言模型的应用中,微调(Fine-tuning)是使预训练模型适应特定任务的关键技术。ChatGLM3作为当前热门的开源中文大模型,提供了多种微调方式,包括全参数微调、LoRA和P-TuningV2等。本文将深入探讨ChatGLM3项目中P-TuningV2微调后模型加载的相关问题和技术细节。
P-TuningV2微调机制解析
P-TuningV2是一种参数高效的微调方法,与LoRA不同,它主要通过添加可训练的前缀参数(prefix)来实现模型适配,而不是采用低秩适配的方式。这种微调方式具有以下特点:
- 参数效率:仅需微调少量参数即可获得良好效果
- 训练稳定性:相比全参数微调,训练过程更加稳定
- 模型保存:微调后的模型会保存前缀参数而非完整模型权重
微调后的模型结构
在ChatGLM3项目中,使用P-TuningV2微调后会生成以下关键文件:
pytorch_model.bin:包含微调后的前缀参数config.json:记录模型配置信息training_args.bin:保存训练参数
值得注意的是,P-TuningV2微调不会生成adapter_config.json文件,这与LoRA微调方式不同。这是因为P-TuningV2的前缀参数直接集成在模型结构中,不需要额外的适配器配置。
模型加载的正确方式
对于P-TuningV2微调后的模型,应采用标准的模型加载方式:
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"path_to_finetuned_model",
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(
"path_to_finetuned_model",
trust_remote_code=True
)
如果原始模型位置发生变更,需要确保微调后的模型配置中base_model_name_or_path指向正确的原始模型路径。
常见问题解决方案
-
缺少adapter_config.json问题:
- 这是正常现象,P-TuningV2微调不会生成该文件
- 无需额外处理,直接加载微调后的模型即可
-
模型路径变更问题:
- 如果原始模型位置变更,需要手动修改微调模型目录下的
config.json文件 - 更新其中的
_name_or_path字段为新的原始模型路径
- 如果原始模型位置变更,需要手动修改微调模型目录下的
-
加载方式选择:
- P-TuningV2微调后的模型应使用
AutoModelForCausalLM加载 - 只有LoRA微调才需要使用
AutoPeftModelForCausalLM
- P-TuningV2微调后的模型应使用
最佳实践建议
- 在微调前明确记录原始模型的位置信息
- 微调完成后检查生成的文件结构是否符合预期
- 对于生产环境部署,建议将微调后的模型与原始模型合并
- 使用版本控制工具管理不同微调版本的模型
总结
理解不同微调方法的技术特点和实现差异对于正确使用ChatGLM3至关重要。P-TuningV2作为一种高效的微调方式,虽然与LoRA在实现上有所不同,但同样能够有效地使模型适应特定任务。掌握这些微调技术的细节,将帮助开发者更好地利用ChatGLM3的强大能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328