Ash AI 使用指南:Elixir 框架中的 AI 集成方案
2025-07-08 15:49:39作者:庞队千Virginia
概述
Ash AI 是 Ash 框架的一个扩展模块,它将现代人工智能能力无缝集成到 Elixir 应用开发中。作为 Ash 生态系统的智能增强组件,它提供了向量化处理、大语言模型交互和 AI 工具集成等核心功能,使开发者能够轻松构建智能化的数据驱动应用。
核心概念解析
向量化技术
向量化是将文本数据转换为数值向量(嵌入)的过程,这是实现语义搜索的基础。Ash AI 的向量化功能包含以下关键要素:
- 文本预处理:通过组合多个属性构建完整的上下文文本
- 嵌入模型:将文本转换为高维向量表示
- 更新策略:控制向量生成的时机和方式
AI 工具系统
Ash AI 允许将资源操作暴露为 AI 可调用的工具,实现以下功能:
- 自然语言接口访问数据库操作
- 构建自动化工作流
- 创建智能代理系统
提示驱动动作
这是一种创新的动作实现方式,其业务逻辑由大语言模型动态生成,特点包括:
- 基于自然语言描述定义动作行为
- 支持结构化输出约束
- 可集成外部工具调用
向量化实战指南
基础配置
在资源中启用向量化需要三个步骤:
defmodule MyApp.Article do
use Ash.Resource, extensions: [AshAi]
vectorize do
full_text do
text(fn record ->
"""
标题: #{record.title}
内容: #{record.content}
作者: #{record.author.name}
"""
end)
used_attributes [:title, :content, :author_id]
end
strategy :ash_oban
embedding_model MyApp.EmbeddingModel
end
end
嵌入模型实现
嵌入模型是将文本转换为向量的核心组件,以下是 OpenAI 模型的实现示例:
defmodule MyApp.OpenAiEmbeddingModel do
use AshAi.EmbeddingModel
@impl true
def dimensions(_opts), do: 3072
@impl true
def generate(texts, _opts) do
# 实际实现中应考虑错误处理和重试机制
response = Req.post!("https://api.openai.com/v1/embeddings", ...)
response.body["data"]
|> Enum.map(& &1["embedding"])
|> then(&{:ok, &1})
end
end
更新策略选择
根据应用场景选择合适的向量更新策略:
策略类型 | 特点 | 适用场景 |
---|---|---|
:after_action |
同步更新,简单直接 | 开发环境、小规模数据 |
:ash_oban |
异步任务队列更新 | 生产环境、大规模数据 |
:manual |
完全手动控制 | 特殊需求场景 |
语义搜索实现
利用向量实现高级搜索功能:
read :semantic_search do
argument :query, :string, allow_nil?: false
prepare fn query, _context ->
{:ok, [embedding]} = MyApp.EmbeddingModel.generate([query.arguments.query])
query
|> Ash.Query.filter(vector_cosine_distance(content_vector, ^embedding) < 0.3)
|> Ash.Query.sort(asc: vector_cosine_distance(content_vector, ^embedding))
end
end
AI 工具系统详解
工具注册与配置
在领域模块中声明可用的 AI 工具:
defmodule MyApp.Blog do
use Ash.Domain, extensions: [AshAi]
tools do
tool :search_articles, MyApp.Article, :search do
description "根据关键词搜索相关文章"
end
tool :create_comment, MyApp.Comment, :create
end
end
数据访问控制
通过 public?
标记控制工具的数据访问权限:
attributes do
attribute :title, :string, public?: true
attribute :content, :string, public?: true
attribute :draft, :boolean # 默认 private
end
relationships do
belongs_to :author, MyApp.User, public?: true
end
访问规则矩阵:
操作类型 | 可访问性 |
---|---|
过滤/排序 | 仅 public 属性 |
参数传递 | 仅 public 参数 |
响应数据 | 默认仅 public,可通过 load 加载私有数据 |
提示驱动动作开发
基础实现
创建由 LLM 实现的资源动作:
action :summarize, :string do
argument :length, :string, constraints: [one_of: ["short", "medium", "long"]]
run prompt(
ChatOpenAI.new!(%{model: "gpt-4"}),
prompt: """
请将以下文章内容总结为<%= @input.arguments.length %>版本:
<%= @input.arguments.text %>
"""
)
end
高级模式
支持复杂交互场景的实现方式:
action :analyze_trend, {:array, :string} do
run prompt(
fn _input, _context ->
ChatOpenAI.new!(%{
model: "gpt-4",
api_key: System.get_env("OPENAI_KEY")
})
end,
tools: [:search_articles, :get_statistics],
prompt: {
"你是一个数据分析专家",
"分析当前行业趋势并给出建议"
}
)
end
生产环境部署建议
MCP 服务配置
实现安全的 AI 工具访问接口:
# 认证管道
pipeline :mcp_auth do
plug AshAuthentication.Strategy.ApiKey.Plug,
resource: MyApp.Accounts.User,
required?: true
end
# 路由配置
scope "/mcp" do
pipe_through [:api, :mcp_auth]
forward "/", AshAi.Mcp.Router,
tools: [:search_articles, :create_comment],
protocol_version: "2024-11-05"
end
性能优化
- 向量索引:考虑使用专门的向量数据库扩展
- 缓存策略:对常见查询结果实现缓存
- 批量处理:对大量文本使用批量嵌入生成
测试策略
确保 AI 组件可靠性的测试方法:
- 嵌入模型测试:
test "embedding generation" do
assert {:ok, [embedding]} = EmbeddingModel.generate(["测试文本"])
assert length(embedding) == 3072
end
- 语义搜索测试:
test "semantic search" do
article = create_article(title: "Elixir 编程", content: "函数式编程语言")
results = Article.search!("函数语言")
assert article.id in Enum.map(results, & &1.id)
end
- 提示动作测试:
test "summary generation" do
{:ok, summary} = Article.summarize(text: "长文本...", length: "short")
assert String.length(summary) < 100
end
最佳实践
- 渐进式采用:从简单功能开始,逐步增加复杂度
- 监控:记录 AI 操作的性能和准确性指标
- 用户反馈:建立机制收集终端用户对 AI 功能的反馈
- 安全边界:为所有 AI 操作设置合理的超时和重试限制
通过 Ash AI,开发者可以构建出真正智能化的 Elixir 应用,将结构化数据与自然语言处理能力完美结合,为用户提供更直观、更强大的交互体验。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8