Ash AI 使用指南:Elixir 框架中的 AI 集成方案
2025-07-08 03:35:41作者:庞队千Virginia
概述
Ash AI 是 Ash 框架的一个扩展模块,它将现代人工智能能力无缝集成到 Elixir 应用开发中。作为 Ash 生态系统的智能增强组件,它提供了向量化处理、大语言模型交互和 AI 工具集成等核心功能,使开发者能够轻松构建智能化的数据驱动应用。
核心概念解析
向量化技术
向量化是将文本数据转换为数值向量(嵌入)的过程,这是实现语义搜索的基础。Ash AI 的向量化功能包含以下关键要素:
- 文本预处理:通过组合多个属性构建完整的上下文文本
- 嵌入模型:将文本转换为高维向量表示
- 更新策略:控制向量生成的时机和方式
AI 工具系统
Ash AI 允许将资源操作暴露为 AI 可调用的工具,实现以下功能:
- 自然语言接口访问数据库操作
- 构建自动化工作流
- 创建智能代理系统
提示驱动动作
这是一种创新的动作实现方式,其业务逻辑由大语言模型动态生成,特点包括:
- 基于自然语言描述定义动作行为
- 支持结构化输出约束
- 可集成外部工具调用
向量化实战指南
基础配置
在资源中启用向量化需要三个步骤:
defmodule MyApp.Article do
use Ash.Resource, extensions: [AshAi]
vectorize do
full_text do
text(fn record ->
"""
标题: #{record.title}
内容: #{record.content}
作者: #{record.author.name}
"""
end)
used_attributes [:title, :content, :author_id]
end
strategy :ash_oban
embedding_model MyApp.EmbeddingModel
end
end
嵌入模型实现
嵌入模型是将文本转换为向量的核心组件,以下是 OpenAI 模型的实现示例:
defmodule MyApp.OpenAiEmbeddingModel do
use AshAi.EmbeddingModel
@impl true
def dimensions(_opts), do: 3072
@impl true
def generate(texts, _opts) do
# 实际实现中应考虑错误处理和重试机制
response = Req.post!("https://api.openai.com/v1/embeddings", ...)
response.body["data"]
|> Enum.map(& &1["embedding"])
|> then(&{:ok, &1})
end
end
更新策略选择
根据应用场景选择合适的向量更新策略:
| 策略类型 | 特点 | 适用场景 |
|---|---|---|
:after_action |
同步更新,简单直接 | 开发环境、小规模数据 |
:ash_oban |
异步任务队列更新 | 生产环境、大规模数据 |
:manual |
完全手动控制 | 特殊需求场景 |
语义搜索实现
利用向量实现高级搜索功能:
read :semantic_search do
argument :query, :string, allow_nil?: false
prepare fn query, _context ->
{:ok, [embedding]} = MyApp.EmbeddingModel.generate([query.arguments.query])
query
|> Ash.Query.filter(vector_cosine_distance(content_vector, ^embedding) < 0.3)
|> Ash.Query.sort(asc: vector_cosine_distance(content_vector, ^embedding))
end
end
AI 工具系统详解
工具注册与配置
在领域模块中声明可用的 AI 工具:
defmodule MyApp.Blog do
use Ash.Domain, extensions: [AshAi]
tools do
tool :search_articles, MyApp.Article, :search do
description "根据关键词搜索相关文章"
end
tool :create_comment, MyApp.Comment, :create
end
end
数据访问控制
通过 public? 标记控制工具的数据访问权限:
attributes do
attribute :title, :string, public?: true
attribute :content, :string, public?: true
attribute :draft, :boolean # 默认 private
end
relationships do
belongs_to :author, MyApp.User, public?: true
end
访问规则矩阵:
| 操作类型 | 可访问性 |
|---|---|
| 过滤/排序 | 仅 public 属性 |
| 参数传递 | 仅 public 参数 |
| 响应数据 | 默认仅 public,可通过 load 加载私有数据 |
提示驱动动作开发
基础实现
创建由 LLM 实现的资源动作:
action :summarize, :string do
argument :length, :string, constraints: [one_of: ["short", "medium", "long"]]
run prompt(
ChatOpenAI.new!(%{model: "gpt-4"}),
prompt: """
请将以下文章内容总结为<%= @input.arguments.length %>版本:
<%= @input.arguments.text %>
"""
)
end
高级模式
支持复杂交互场景的实现方式:
action :analyze_trend, {:array, :string} do
run prompt(
fn _input, _context ->
ChatOpenAI.new!(%{
model: "gpt-4",
api_key: System.get_env("OPENAI_KEY")
})
end,
tools: [:search_articles, :get_statistics],
prompt: {
"你是一个数据分析专家",
"分析当前行业趋势并给出建议"
}
)
end
生产环境部署建议
MCP 服务配置
实现安全的 AI 工具访问接口:
# 认证管道
pipeline :mcp_auth do
plug AshAuthentication.Strategy.ApiKey.Plug,
resource: MyApp.Accounts.User,
required?: true
end
# 路由配置
scope "/mcp" do
pipe_through [:api, :mcp_auth]
forward "/", AshAi.Mcp.Router,
tools: [:search_articles, :create_comment],
protocol_version: "2024-11-05"
end
性能优化
- 向量索引:考虑使用专门的向量数据库扩展
- 缓存策略:对常见查询结果实现缓存
- 批量处理:对大量文本使用批量嵌入生成
测试策略
确保 AI 组件可靠性的测试方法:
- 嵌入模型测试:
test "embedding generation" do
assert {:ok, [embedding]} = EmbeddingModel.generate(["测试文本"])
assert length(embedding) == 3072
end
- 语义搜索测试:
test "semantic search" do
article = create_article(title: "Elixir 编程", content: "函数式编程语言")
results = Article.search!("函数语言")
assert article.id in Enum.map(results, & &1.id)
end
- 提示动作测试:
test "summary generation" do
{:ok, summary} = Article.summarize(text: "长文本...", length: "short")
assert String.length(summary) < 100
end
最佳实践
- 渐进式采用:从简单功能开始,逐步增加复杂度
- 监控:记录 AI 操作的性能和准确性指标
- 用户反馈:建立机制收集终端用户对 AI 功能的反馈
- 安全边界:为所有 AI 操作设置合理的超时和重试限制
通过 Ash AI,开发者可以构建出真正智能化的 Elixir 应用,将结构化数据与自然语言处理能力完美结合,为用户提供更直观、更强大的交互体验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1