Ash AI 使用指南:Elixir 框架中的 AI 集成方案
2025-07-08 19:49:43作者:庞队千Virginia
概述
Ash AI 是 Ash 框架的一个扩展模块,它将现代人工智能能力无缝集成到 Elixir 应用开发中。作为 Ash 生态系统的智能增强组件,它提供了向量化处理、大语言模型交互和 AI 工具集成等核心功能,使开发者能够轻松构建智能化的数据驱动应用。
核心概念解析
向量化技术
向量化是将文本数据转换为数值向量(嵌入)的过程,这是实现语义搜索的基础。Ash AI 的向量化功能包含以下关键要素:
- 文本预处理:通过组合多个属性构建完整的上下文文本
- 嵌入模型:将文本转换为高维向量表示
- 更新策略:控制向量生成的时机和方式
AI 工具系统
Ash AI 允许将资源操作暴露为 AI 可调用的工具,实现以下功能:
- 自然语言接口访问数据库操作
- 构建自动化工作流
- 创建智能代理系统
提示驱动动作
这是一种创新的动作实现方式,其业务逻辑由大语言模型动态生成,特点包括:
- 基于自然语言描述定义动作行为
- 支持结构化输出约束
- 可集成外部工具调用
向量化实战指南
基础配置
在资源中启用向量化需要三个步骤:
defmodule MyApp.Article do
use Ash.Resource, extensions: [AshAi]
vectorize do
full_text do
text(fn record ->
"""
标题: #{record.title}
内容: #{record.content}
作者: #{record.author.name}
"""
end)
used_attributes [:title, :content, :author_id]
end
strategy :ash_oban
embedding_model MyApp.EmbeddingModel
end
end
嵌入模型实现
嵌入模型是将文本转换为向量的核心组件,以下是 OpenAI 模型的实现示例:
defmodule MyApp.OpenAiEmbeddingModel do
use AshAi.EmbeddingModel
@impl true
def dimensions(_opts), do: 3072
@impl true
def generate(texts, _opts) do
# 实际实现中应考虑错误处理和重试机制
response = Req.post!("https://api.openai.com/v1/embeddings", ...)
response.body["data"]
|> Enum.map(& &1["embedding"])
|> then(&{:ok, &1})
end
end
更新策略选择
根据应用场景选择合适的向量更新策略:
| 策略类型 | 特点 | 适用场景 |
|---|---|---|
:after_action |
同步更新,简单直接 | 开发环境、小规模数据 |
:ash_oban |
异步任务队列更新 | 生产环境、大规模数据 |
:manual |
完全手动控制 | 特殊需求场景 |
语义搜索实现
利用向量实现高级搜索功能:
read :semantic_search do
argument :query, :string, allow_nil?: false
prepare fn query, _context ->
{:ok, [embedding]} = MyApp.EmbeddingModel.generate([query.arguments.query])
query
|> Ash.Query.filter(vector_cosine_distance(content_vector, ^embedding) < 0.3)
|> Ash.Query.sort(asc: vector_cosine_distance(content_vector, ^embedding))
end
end
AI 工具系统详解
工具注册与配置
在领域模块中声明可用的 AI 工具:
defmodule MyApp.Blog do
use Ash.Domain, extensions: [AshAi]
tools do
tool :search_articles, MyApp.Article, :search do
description "根据关键词搜索相关文章"
end
tool :create_comment, MyApp.Comment, :create
end
end
数据访问控制
通过 public? 标记控制工具的数据访问权限:
attributes do
attribute :title, :string, public?: true
attribute :content, :string, public?: true
attribute :draft, :boolean # 默认 private
end
relationships do
belongs_to :author, MyApp.User, public?: true
end
访问规则矩阵:
| 操作类型 | 可访问性 |
|---|---|
| 过滤/排序 | 仅 public 属性 |
| 参数传递 | 仅 public 参数 |
| 响应数据 | 默认仅 public,可通过 load 加载私有数据 |
提示驱动动作开发
基础实现
创建由 LLM 实现的资源动作:
action :summarize, :string do
argument :length, :string, constraints: [one_of: ["short", "medium", "long"]]
run prompt(
ChatOpenAI.new!(%{model: "gpt-4"}),
prompt: """
请将以下文章内容总结为<%= @input.arguments.length %>版本:
<%= @input.arguments.text %>
"""
)
end
高级模式
支持复杂交互场景的实现方式:
action :analyze_trend, {:array, :string} do
run prompt(
fn _input, _context ->
ChatOpenAI.new!(%{
model: "gpt-4",
api_key: System.get_env("OPENAI_KEY")
})
end,
tools: [:search_articles, :get_statistics],
prompt: {
"你是一个数据分析专家",
"分析当前行业趋势并给出建议"
}
)
end
生产环境部署建议
MCP 服务配置
实现安全的 AI 工具访问接口:
# 认证管道
pipeline :mcp_auth do
plug AshAuthentication.Strategy.ApiKey.Plug,
resource: MyApp.Accounts.User,
required?: true
end
# 路由配置
scope "/mcp" do
pipe_through [:api, :mcp_auth]
forward "/", AshAi.Mcp.Router,
tools: [:search_articles, :create_comment],
protocol_version: "2024-11-05"
end
性能优化
- 向量索引:考虑使用专门的向量数据库扩展
- 缓存策略:对常见查询结果实现缓存
- 批量处理:对大量文本使用批量嵌入生成
测试策略
确保 AI 组件可靠性的测试方法:
- 嵌入模型测试:
test "embedding generation" do
assert {:ok, [embedding]} = EmbeddingModel.generate(["测试文本"])
assert length(embedding) == 3072
end
- 语义搜索测试:
test "semantic search" do
article = create_article(title: "Elixir 编程", content: "函数式编程语言")
results = Article.search!("函数语言")
assert article.id in Enum.map(results, & &1.id)
end
- 提示动作测试:
test "summary generation" do
{:ok, summary} = Article.summarize(text: "长文本...", length: "short")
assert String.length(summary) < 100
end
最佳实践
- 渐进式采用:从简单功能开始,逐步增加复杂度
- 监控:记录 AI 操作的性能和准确性指标
- 用户反馈:建立机制收集终端用户对 AI 功能的反馈
- 安全边界:为所有 AI 操作设置合理的超时和重试限制
通过 Ash AI,开发者可以构建出真正智能化的 Elixir 应用,将结构化数据与自然语言处理能力完美结合,为用户提供更直观、更强大的交互体验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896