Firebase Admin Node 中并发请求的令牌优化策略
在 Firebase Admin Node 项目中,开发者发现了一个关于消息发送接口的性能优化点。当使用 Messaging#sendEach
方法批量发送消息时,系统会为每条消息单独获取访问令牌,这在并发场景下会导致不必要的令牌获取请求。
问题背景
Firebase Admin SDK 中的消息发送功能需要有效的访问令牌来授权 API 调用。在批量发送场景下,每条消息都会触发一个独立的 HTTP 请求。虽然 SDK 内部实现了令牌缓存机制,但由于这些请求是并发执行的,缓存机制无法有效发挥作用。
具体表现为:当多个请求几乎同时到达时,每个请求都会检查缓存并发现令牌需要刷新,于是各自发起独立的令牌获取请求。这不仅增加了网络开销,还可能导致短时间内产生大量冗余请求。
解决方案分析
针对这个问题,项目维护者提出了两种可能的解决方案:
-
预获取令牌方案:在发送批量请求前预先获取令牌,然后将该令牌注入到每个发送请求中。这种方法直接避免了并发获取令牌的问题,但需要对现有请求处理流程进行一定改造。
-
令牌请求合并方案:改进
getToken()
方法的实现,使其能够识别并合并并发的令牌刷新请求。当多个调用同时请求令牌时,系统只执行一次实际的刷新操作,并将同一个 Promise 返回给所有调用者。
经过讨论,第二种方案被认为更具通用性,因为它不仅解决了消息发送场景的问题,还能惠及所有需要授权访问的并发请求场景。
技术实现细节
令牌请求合并的核心实现思路是:
public getToken(forceRefresh = false): Promise<FirebaseAccessToken> {
if (forceRefresh || this.shouldRefresh()) {
if (!this.isRefreshing) {
this.promiseToCachedToken_ = this.refreshToken();
}
return this.promiseToCachedToken_
}
return Promise.resolve(this.cachedToken_);
}
这段代码引入了几个关键机制:
isRefreshing
标志位:作为锁机制,防止重复刷新- 共享 Promise:所有并发请求共享同一个刷新操作的结果
- 缓存机制:在令牌有效期内直接返回缓存结果
方案优势
这种改进方案具有以下优点:
- 减少网络请求:有效避免了令牌刷新请求的"惊群效应"
- 保持API兼容性:不需要改变现有方法签名和使用方式
- 通用性强:适用于所有需要授权访问的场景
- 实现简洁:改动量小,风险可控
总结
在分布式系统和并发编程中,资源共享和请求合并是常见的优化手段。Firebase Admin Node 通过对令牌获取逻辑的改进,展示了如何优雅地处理并发场景下的资源竞争问题。这种模式也可以为其他需要处理类似问题的开发者提供参考。
对于使用 Firebase Admin SDK 的开发者来说,这一改进将带来更高效的批量消息发送体验,特别是在高并发场景下能够显著减少不必要的网络开销。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0126AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









