Firebase Admin Node 中并发请求的令牌优化策略
在 Firebase Admin Node 项目中,开发者发现了一个关于消息发送接口的性能优化点。当使用 Messaging#sendEach 方法批量发送消息时,系统会为每条消息单独获取访问令牌,这在并发场景下会导致不必要的令牌获取请求。
问题背景
Firebase Admin SDK 中的消息发送功能需要有效的访问令牌来授权 API 调用。在批量发送场景下,每条消息都会触发一个独立的 HTTP 请求。虽然 SDK 内部实现了令牌缓存机制,但由于这些请求是并发执行的,缓存机制无法有效发挥作用。
具体表现为:当多个请求几乎同时到达时,每个请求都会检查缓存并发现令牌需要刷新,于是各自发起独立的令牌获取请求。这不仅增加了网络开销,还可能导致短时间内产生大量冗余请求。
解决方案分析
针对这个问题,项目维护者提出了两种可能的解决方案:
-
预获取令牌方案:在发送批量请求前预先获取令牌,然后将该令牌注入到每个发送请求中。这种方法直接避免了并发获取令牌的问题,但需要对现有请求处理流程进行一定改造。
-
令牌请求合并方案:改进
getToken()方法的实现,使其能够识别并合并并发的令牌刷新请求。当多个调用同时请求令牌时,系统只执行一次实际的刷新操作,并将同一个 Promise 返回给所有调用者。
经过讨论,第二种方案被认为更具通用性,因为它不仅解决了消息发送场景的问题,还能惠及所有需要授权访问的并发请求场景。
技术实现细节
令牌请求合并的核心实现思路是:
public getToken(forceRefresh = false): Promise<FirebaseAccessToken> {
if (forceRefresh || this.shouldRefresh()) {
if (!this.isRefreshing) {
this.promiseToCachedToken_ = this.refreshToken();
}
return this.promiseToCachedToken_
}
return Promise.resolve(this.cachedToken_);
}
这段代码引入了几个关键机制:
isRefreshing标志位:作为锁机制,防止重复刷新- 共享 Promise:所有并发请求共享同一个刷新操作的结果
- 缓存机制:在令牌有效期内直接返回缓存结果
方案优势
这种改进方案具有以下优点:
- 减少网络请求:有效避免了令牌刷新请求的"惊群效应"
- 保持API兼容性:不需要改变现有方法签名和使用方式
- 通用性强:适用于所有需要授权访问的场景
- 实现简洁:改动量小,风险可控
总结
在分布式系统和并发编程中,资源共享和请求合并是常见的优化手段。Firebase Admin Node 通过对令牌获取逻辑的改进,展示了如何优雅地处理并发场景下的资源竞争问题。这种模式也可以为其他需要处理类似问题的开发者提供参考。
对于使用 Firebase Admin SDK 的开发者来说,这一改进将带来更高效的批量消息发送体验,特别是在高并发场景下能够显著减少不必要的网络开销。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00