TorchMetrics中PanopticQuality的类别顺序问题解析
2025-07-03 11:25:44作者:伍霜盼Ellen
问题背景
在计算机视觉领域,全景分割质量评估(Panoptic Quality, PQ)是一个重要的评价指标,用于衡量模型在全景分割任务中的表现。TorchMetrics作为PyTorch生态中重要的评估指标库,提供了panoptic_quality函数的实现。然而,该函数在返回每类得分时存在一个潜在问题——类别顺序的不确定性。
问题现象
当使用panoptic_quality函数并设置return_per_class=True参数时,函数会返回每个类别的PQ得分。但开发者发现,返回的类别顺序并不是固定的,而是会随着输入类别ID的不同而发生变化。例如:
# 当类别为[0,2,1]时返回顺序为[0,2,1]
# 当类别为[0,3,2]时返回顺序为[0,3,2]
# 但当类别为[0,10,2]时返回顺序却变成了[0,2,10]
这种不一致的行为会导致下游处理结果时出现混乱,特别是当需要比较不同模型或不同运行结果时。
技术原因分析
深入代码实现后发现,问题根源在于类别ID到连续ID的映射过程中使用了Python的集合(Set)数据结构。Python中的集合是无序的数据结构,当使用enumerate()遍历集合时,元素的顺序是不确定的。
具体来说,在TorchMetrics的实现中:
- 输入的
things和stuffs参数被转换为集合 - 使用
enumerate()为这些类别分配连续的ID - 这种映射关系决定了最终输出结果的顺序
由于集合的无序特性,导致相同的类别在不同运行或不同环境下可能获得不同的连续ID,进而影响最终输出的顺序。
解决方案建议
针对这个问题,建议的解决方案包括:
- 强制排序:在创建
cat_id_to_continuous_id映射前,对things和stuffs中的类别ID进行排序 - 明确文档:在函数文档中明确说明返回类别的顺序规则
- 返回类别信息:除了得分外,同时返回对应的类别ID,消除歧义
理想的输出顺序应该遵循以下规则:
- 先处理
things类别,再处理stuffs类别 - 在每个组内按数值大小排序
- 例如:
things=[4,1]和stuffs=[3,2]应该输出[1,4,2,3]
影响与重要性
这个问题虽然看似简单,但在实际应用中可能带来严重后果:
- 结果不可比性:不同运行间的结果无法直接比较
- 调试困难:开发者难以确定模型在特定类别上的表现变化
- 生产风险:如果依赖输出顺序的下游处理逻辑,可能导致错误决策
最佳实践建议
在使用panoptic_quality函数时,建议:
- 始终检查返回的类别顺序是否与预期一致
- 如果需要固定顺序,可以自行对结果进行排序
- 考虑将类别ID与得分一起保存,避免仅依赖顺序
总结
TorchMetrics中的panoptic_quality函数在返回每类得分时的顺序不确定性是一个需要注意的问题。理解这一问题的根源有助于开发者正确使用该指标,避免潜在的错误。同时,这也提醒我们在设计评估指标时,需要考虑输出的一致性和可预测性,特别是在处理多类别问题时。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868