Terraform Provider Azurerm中认知服务部署的兼容性问题解析
2025-06-11 23:31:45作者:幸俭卉
问题背景
在使用Terraform Provider Azurerm部署Azure认知服务时,开发者可能会遇到资源类型与SKU兼容性的问题。特别是在部署OpenAI模型时,使用azurerm_cognitive_account和azurerm_cognitive_deployment组合时会出现SKU不支持的报错,而改用azurerm_ai_services资源却能成功部署。
核心问题分析
Azure平台上的AI服务部署方式经历了演进,目前存在两种不同的资源类型:
- 传统认知服务账户(Cognitive Account):这是早期的服务形态
- AI服务专用账户(AI Services):这是较新的服务形态,专门为AI场景优化
当开发者尝试在传统认知服务账户下部署OpenAI模型时,会遇到SKU不兼容的问题,特别是当尝试使用"Standard" SKU时。这是因为:
- 传统认知服务账户的SKU体系与AI服务专用账户不同
- OpenAI模型部署需要特定的基础架构支持,只有AI服务专用账户提供
解决方案
正确的部署方式应该是使用azurerm_ai_services资源来创建AI服务账户,然后在该账户下部署模型:
resource "azurerm_ai_services" "example" {
name = "example-ai-service"
custom_subdomain_name = "example-ai-service"
location = "swedencentral"
resource_group_name = azurerm_resource_group.example.name
sku_name = "S0"
}
resource "azurerm_cognitive_deployment" "example" {
name = "gpt-4o-deployment"
cognitive_account_id = azurerm_ai_services.example.id
version_upgrade_option = "OnceNewDefaultVersionAvailable"
rai_policy_name = "Microsoft.DefaultV2"
model {
format = "OpenAI"
name = "gpt-4o"
version = "2024-11-20"
}
sku {
capacity = 10
name = "Standard"
}
}
技术要点
-
资源类型选择:对于OpenAI等现代AI服务,应优先使用
azurerm_ai_services而非传统的azurerm_cognitive_account -
SKU兼容性:AI服务专用账户支持"Standard" SKU,而传统认知服务账户可能需要使用特定的SKU如"DataZoneStandard"
-
区域限制:某些AI模型可能只在特定区域可用,部署时需确认区域支持情况
-
版本管理:模型版本需要精确指定,且不同版本可能有不同的SKU要求
最佳实践建议
- 在部署前查阅Azure官方文档,确认目标模型的最新部署要求
- 使用Terraform前,先在Azure Portal中手动创建一次,了解正确的配置参数
- 注意资源的位置(region)设置,确保与模型可用区域匹配
- 对于生产环境,建议从低容量开始测试,再逐步调整
通过理解Azure AI服务的资源模型差异,开发者可以避免这类兼容性问题,顺利部署所需的AI模型服务。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217