【亲测免费】 ClearML 官方教程
2026-01-17 09:32:59作者:翟江哲Frasier
1. 项目介绍
ClearML(原名Allegro Trains)是一款强大的开源MLOps工具,旨在简化人工智能工作流,提供实验管理、数据管理、管道编排、调度及模型服务等功能。它支持多种机器学习和深度学习框架,如PyTorch、TensorFlow等,同时也兼容Jupyter Notebook和PyCharm等开发环境。
主要特点:
- 实验管理:自动跟踪实验,记录环境和结果。
- MLOps/LLMOps:自动化操作和管道解决方案,适用于云端、本地服务器或 Kubernetes 集群。
- 数据管理:基于对象存储的数据版本控制和管理。
- 模型服务:云原生、可扩展的模型部署,五分钟内创建新的模型端点。
2. 项目快速启动
首先,确保已安装Python。接下来,通过pip安装ClearML:
pip install clearml
现在,我们可以运行一个简单的任务来体验ClearML的功能:
from clearml import Task, Dataset
# 创建一个新的任务
task = Task.init(project_name="my_project", task_name="quick_start")
# 使用内置示例数据集
dataset = Dataset.get("OpenImagesV6").download()
# 运行一个简单的命令
task.run_command(f"echo 'Hello, {task.name}! Processing dataset: {dataset.name}'")
执行上述脚本后,你将在ClearML界面中看到新创建的任务及其输出。
3. 应用案例和最佳实践
案例1:实验对比与复现
from clearml import Experiment, TensorBoard
# 启动新实验
exp = Experiment(name='cnn-training', project_name='image-classification')
with exp.start.logged():
# 实验代码
...
# 记录模型训练过程的TensorBoard日志
tb_callback = TensorBoard(log_dir=exp.get_local_logdir(), histogram_freq=1)
model.fit(X_train, y_train, callbacks=[tb_callback])
最佳实践:远程调试
在Jupyter Notebook中配置ClearML以进行远程调试:
from clearml import Task
# 获取或创建任务
task = Task.attach_or_create('remote-debugging-notebook')
# 设置任务属性,如输入参数
task.set_parameters({'input_data': 'path/to/data'})
# 在Notebook中启动任务
task.execute_as_notebook()
4. 典型生态项目
- PyTorch:包括 Ignite 和 Lightning 的集成。
- TensorFlow/Keras: 自然集成,支持版本控制。
- AutoKeras: 无缝对接,轻松尝试自动化模型搜索。
- XGBoost/LightGBM: 提供模型训练和评估支持。
- MegEngine: 支持此框架的实验跟踪和管理。
要了解更多详细信息和完整的文档,访问ClearML的官方网站和官方GitHub页面,以及参与社区讨论和问题解答。
本文档简要介绍了ClearML的基本概念、快速启动步骤,以及一些实用的应用场景和生态项目。对于更深入的使用,建议查阅官方文档和社区资源。祝你在使用ClearML提升你的AI项目效率上一切顺利!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870