DeepSeek Janus项目在Apple Silicon芯片上的部署指南
2025-05-13 22:24:57作者:柯茵沙
前言
随着Apple Silicon芯片(M1/M2/M3)在开发者群体中的普及,如何在Mac设备上高效运行大型语言模型成为热门话题。本文将详细介绍如何在配备Apple Silicon芯片的Mac设备上部署DeepSeek Janus项目,并特别针对MLX框架的支持情况进行技术解析。
技术背景
Apple Silicon芯片采用了ARM架构,与传统x86架构存在显著差异。MLX是Apple专门为Apple Silicon优化的机器学习框架,能够充分发挥M系列芯片的神经网络引擎优势。对于Janus这样的多模态大模型项目,在Mac平台上的部署需要考虑架构兼容性和性能优化。
部署方案
基础环境准备
- 首先通过pip安装项目依赖:
pip install -e .
pip install gradio
- 处理PyTorch兼容性:
pip uninstall torch torchvision torchaudio -y
conda install pytorch::pytorch torchvision torchaudio -c pytorch
MLX框架支持
项目社区提供了专门的MLX补丁文件(mlx.patch),该补丁实现了:
- 对Apple Neural Engine的优化支持
- 内存访问模式的调整
- 计算图优化策略
应用补丁后,模型可以:
- 显著降低内存占用
- 提高推理速度
- 优化电池消耗
运行演示程序
完成环境配置后,可通过以下命令启动演示界面:
python demo/app_januspro.py
服务启动后,在浏览器中访问指定地址即可体验Janus的多模态能力。
性能优化建议
- 对于大型模型,建议使用16GB或更高内存的Mac设备
- 在系统设置中为Python进程分配更多内存
- 考虑使用量化技术减小模型体积
- 关闭不必要的后台进程以释放神经网络引擎资源
常见问题排查
若遇到性能问题,可尝试:
- 检查是否正确应用了MLX补丁
- 确认PyTorch是否为ARM64版本
- 监控活动监视器中的ANE(Apple Neural Engine)使用情况
结语
通过本文介绍的方案,开发者可以在Apple Silicon设备上充分发挥Janus项目的多模态能力。随着MLX生态的不断完善,预计未来会有更多优化方案出现,进一步提升大模型在移动设备上的表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
Ascend Extension for PyTorch
Python
321
371
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.05 K
523
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
React Native鸿蒙化仓库
JavaScript
300
347