VSCode Jupyter 插件使用教程
1. 项目介绍
VSCode Jupyter 插件是由微软开发的一个开源项目,旨在为 Visual Studio Code 用户提供对 Jupyter Notebooks 的原生支持。通过该插件,用户可以在 VSCode 中直接创建、编辑和运行 Jupyter Notebooks,无需离开编辑器。该插件支持 Python 代码文件,并且提供了丰富的功能,如代码补全、调试、变量查看等,极大地提升了数据科学工作流的效率。
2. 项目快速启动
安装插件
首先,确保你已经安装了 Visual Studio Code。然后,按照以下步骤安装 Jupyter 插件:
- 打开 VSCode。
- 点击左侧活动栏中的扩展图标(或按
Ctrl+Shift+X)。 - 在搜索框中输入
Jupyter。 - 找到
Jupyter插件,点击安装。
创建和运行 Jupyter Notebook
安装完成后,你可以通过以下步骤创建和运行 Jupyter Notebook:
- 打开 VSCode。
- 点击左侧活动栏中的
文件资源管理器图标(或按Ctrl+Shift+E)。 - 右键点击你想要存放 Notebook 的文件夹,选择
新建文件。 - 将文件命名为
example.ipynb。 - 双击打开
example.ipynb,你将看到一个空的 Jupyter Notebook。
示例代码
在 Notebook 中,你可以输入以下 Python 代码并运行:
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
# 生成一些随机数据
data = np.random.randn(1000)
# 绘制直方图
plt.hist(data, bins=30)
plt.title("随机数据直方图")
plt.show()
运行代码后,你将看到一个随机数据的直方图。
3. 应用案例和最佳实践
数据分析
Jupyter Notebook 是数据分析的理想工具。你可以使用 Pandas 进行数据处理,使用 Matplotlib 或 Seaborn 进行数据可视化。以下是一个简单的数据分析示例:
import pandas as pd
# 读取 CSV 文件
df = pd.read_csv('data.csv')
# 查看数据前几行
print(df.head())
# 数据统计信息
print(df.describe())
机器学习
Jupyter Notebook 也广泛用于机器学习项目。你可以使用 Scikit-learn 进行模型训练和评估。以下是一个简单的线性回归示例:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
print('均方误差:', metrics.mean_squared_error(y_test, y_pred))
4. 典型生态项目
Pandas
Pandas 是一个强大的数据处理库,广泛用于数据分析和数据清洗。通过 VSCode Jupyter 插件,你可以轻松地在 Notebook 中使用 Pandas 进行数据操作。
Matplotlib 和 Seaborn
Matplotlib 和 Seaborn 是 Python 中常用的数据可视化库。通过 VSCode Jupyter 插件,你可以直接在 Notebook 中绘制各种图表,如折线图、柱状图、散点图等。
Scikit-learn
Scikit-learn 是一个用于机器学习的开源库,提供了各种机器学习算法和工具。通过 VSCode Jupyter 插件,你可以方便地进行模型训练、评估和调优。
通过以上模块的介绍和示例,你应该能够快速上手并充分利用 VSCode Jupyter 插件进行数据科学工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00