VSCode Jupyter 插件使用教程
1. 项目介绍
VSCode Jupyter 插件是由微软开发的一个开源项目,旨在为 Visual Studio Code 用户提供对 Jupyter Notebooks 的原生支持。通过该插件,用户可以在 VSCode 中直接创建、编辑和运行 Jupyter Notebooks,无需离开编辑器。该插件支持 Python 代码文件,并且提供了丰富的功能,如代码补全、调试、变量查看等,极大地提升了数据科学工作流的效率。
2. 项目快速启动
安装插件
首先,确保你已经安装了 Visual Studio Code。然后,按照以下步骤安装 Jupyter 插件:
- 打开 VSCode。
 - 点击左侧活动栏中的扩展图标(或按 
Ctrl+Shift+X)。 - 在搜索框中输入 
Jupyter。 - 找到 
Jupyter插件,点击安装。 
创建和运行 Jupyter Notebook
安装完成后,你可以通过以下步骤创建和运行 Jupyter Notebook:
- 打开 VSCode。
 - 点击左侧活动栏中的 
文件资源管理器图标(或按Ctrl+Shift+E)。 - 右键点击你想要存放 Notebook 的文件夹,选择 
新建文件。 - 将文件命名为 
example.ipynb。 - 双击打开 
example.ipynb,你将看到一个空的 Jupyter Notebook。 
示例代码
在 Notebook 中,你可以输入以下 Python 代码并运行:
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
# 生成一些随机数据
data = np.random.randn(1000)
# 绘制直方图
plt.hist(data, bins=30)
plt.title("随机数据直方图")
plt.show()
运行代码后,你将看到一个随机数据的直方图。
3. 应用案例和最佳实践
数据分析
Jupyter Notebook 是数据分析的理想工具。你可以使用 Pandas 进行数据处理,使用 Matplotlib 或 Seaborn 进行数据可视化。以下是一个简单的数据分析示例:
import pandas as pd
# 读取 CSV 文件
df = pd.read_csv('data.csv')
# 查看数据前几行
print(df.head())
# 数据统计信息
print(df.describe())
机器学习
Jupyter Notebook 也广泛用于机器学习项目。你可以使用 Scikit-learn 进行模型训练和评估。以下是一个简单的线性回归示例:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
print('均方误差:', metrics.mean_squared_error(y_test, y_pred))
4. 典型生态项目
Pandas
Pandas 是一个强大的数据处理库,广泛用于数据分析和数据清洗。通过 VSCode Jupyter 插件,你可以轻松地在 Notebook 中使用 Pandas 进行数据操作。
Matplotlib 和 Seaborn
Matplotlib 和 Seaborn 是 Python 中常用的数据可视化库。通过 VSCode Jupyter 插件,你可以直接在 Notebook 中绘制各种图表,如折线图、柱状图、散点图等。
Scikit-learn
Scikit-learn 是一个用于机器学习的开源库,提供了各种机器学习算法和工具。通过 VSCode Jupyter 插件,你可以方便地进行模型训练、评估和调优。
通过以上模块的介绍和示例,你应该能够快速上手并充分利用 VSCode Jupyter 插件进行数据科学工作。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00