Selenium 开源项目教程
Selenium 是一个广泛使用的自动化测试工具,支持多种编程语言,如 Python、Java 等,用于Web应用的自动化测试。本教程将详细介绍从其GitHub仓库获取的 selenium 项目的关键组成部分,包括项目目录结构、启动文件以及配置文件。
1. 项目目录结构及介绍
Selenium 的 GitHub 仓库地址是 https://github.com/tebeka/selenium.git,不过请注意,直接从 tebeka 下载可能指向的是旧版本或特定分支。当前,Selenium 的维护者主要在 https://github.com/SeleniumHQ/selenium 这个官方仓库进行活动。以下是一般Selenium仓库的基本目录结构概述:
selenium/
├── java # 主要包含Java客户端库的源代码
│ ├── build.gradle # Gradle构建脚本
│ └── ... # 其他Java相关文件和目录
├── python # Python绑定的源代码
│ ├── selenium # Python包的实际内容
│ │ ├── webdriver # 各种浏览器驱动相关的代码
│ │ └── ...
│ └── setup.py # Python安装脚本
├── ruby # Ruby客户端的相关文件
│ └── ...
├── .gitignore # Git忽略文件
├── CONTRIBUTING.md # 贡献指南
└── README.md # 项目说明文件
这个结构显示了Selenium支持多个编程语言的特性,每个子目录对应不同的语言绑定。
2. 项目的启动文件介绍
Selenium本身作为一个框架,没有统一的“启动文件”概念。对于开发人员而言,“启动”通常是指通过各自语言环境调用Selenium API来初始化WebDriver实例的过程。例如,在Python中,常见的“启动”操作是导入webdriver模块并创建一个新的浏览器实例:
from selenium import webdriver
driver = webdriver.Chrome()
driver.get("http://www.example.com")
在Java中,则可能是这样的:
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
public class Main {
public static void main(String[] args) {
System.setProperty("webdriver.chrome.driver", "path/to/chromedriver");
WebDriver driver = new ChromeDriver();
driver.get("http://www.example.com");
}
}
这里提到的不是特定的启动文件,而是示例代码片段,说明如何开始使用Selenium。
3. 项目的配置文件介绍
Selenium的核心并不依赖于单一的全局配置文件。配置主要是通过编程方式在脚本中完成的,比如指定WebDriver路径、设置浏览器选项等。然而,当使用Grid部署Selenium时,会涉及到 grid hub 和 node 的配置,其中主要通过JSON配置文件来定义。例如,hub.config.js 和各个节点的配置文件用来指示如何启动和配置Grid网络的组件。
注意:具体的配置文件样例和路径可能会依据版本而异。对于自定义的集成或者特定应用,开发者往往会在自己的项目内创建配置文件来管理这些设置,而不是在Selenium仓库直接提供。
以上就是对Selenium开源项目关键结构部分的一个概括性介绍。由于Selenium的灵活性和多样性,深入探索各语言的库和实际应用场景将会揭示更丰富的细节。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00