Kubeflow KFServing中vLLM引擎在未定义max_tokens时的崩溃问题分析
问题背景
在Kubeflow KFServing项目中,当使用Hugging Face服务器结合vLLM后端部署大型语言模型(LLM)时,如果启用了vLLM的多步调度功能(num-scheduler-steps > 1)且未在请求中设置max_tokens参数,会导致vLLM引擎崩溃。这一问题不仅影响当前请求,还会导致后续所有请求失败,显示模型未就绪的错误信息。
技术细节分析
该问题的核心在于vLLM引擎的多步调度处理器(multi_step.py)在处理输出时,强制要求SamplingParams.max_tokens参数必须被设置。当该参数未定义时,Python会尝试对None类型进行数学运算,从而引发TypeError异常。
在多步调度模式下,vLLM引擎需要计算剩余可生成的token数量,这依赖于max_tokens参数。计算公式为:剩余token数 = max_tokens - (已生成token数 + 当前步骤生成的token数)。当max_tokens为None时,这个计算就无法进行。
影响范围
此问题具有以下特点:
- 仅在使用多步调度(num-scheduler-steps > 1)时出现
- 影响所有未设置max_tokens参数的OpenAI兼容API请求
- 会导致引擎崩溃,需要重启服务才能恢复
- 在单步调度模式下工作正常
解决方案
解决此问题的方法是为max_tokens设置合理的默认值。在vLLM上游项目中,已经通过修改to_sampling_params函数修复了这一问题。该修复为max_tokens参数添加了默认值处理逻辑。
对于KFServing项目,由于它实现了自己的vLLM前端(huggingfaceserver/vllm),而非直接使用vLLM的OpenAI前端(vllm/entrypoints/openai),因此需要将类似的修复移植到KFServing的代码中。
最佳实践建议
为避免此类问题,建议:
- 在使用多步调度时,始终为请求设置max_tokens参数
- 在服务端实现参数校验和默认值处理
- 考虑在模型部署配置中设置全局的max_tokens限制
- 监控引擎日志,及时发现和处理类似异常
总结
这个问题展示了在分布式机器学习服务中参数验证和异常处理的重要性。特别是在性能优化功能(如多步调度)中,需要确保所有依赖参数都被正确处理。对于使用KFServing和vLLM的组合部署LLM的用户,了解这一问题及其解决方案有助于构建更稳定的服务。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









