首页
/ Kubeflow KFServing中vLLM引擎在未定义max_tokens时的崩溃问题分析

Kubeflow KFServing中vLLM引擎在未定义max_tokens时的崩溃问题分析

2025-06-16 11:00:38作者:廉彬冶Miranda

问题背景

在Kubeflow KFServing项目中,当使用Hugging Face服务器结合vLLM后端部署大型语言模型(LLM)时,如果启用了vLLM的多步调度功能(num-scheduler-steps > 1)且未在请求中设置max_tokens参数,会导致vLLM引擎崩溃。这一问题不仅影响当前请求,还会导致后续所有请求失败,显示模型未就绪的错误信息。

技术细节分析

该问题的核心在于vLLM引擎的多步调度处理器(multi_step.py)在处理输出时,强制要求SamplingParams.max_tokens参数必须被设置。当该参数未定义时,Python会尝试对None类型进行数学运算,从而引发TypeError异常。

在多步调度模式下,vLLM引擎需要计算剩余可生成的token数量,这依赖于max_tokens参数。计算公式为:剩余token数 = max_tokens - (已生成token数 + 当前步骤生成的token数)。当max_tokens为None时,这个计算就无法进行。

影响范围

此问题具有以下特点:

  1. 仅在使用多步调度(num-scheduler-steps > 1)时出现
  2. 影响所有未设置max_tokens参数的OpenAI兼容API请求
  3. 会导致引擎崩溃,需要重启服务才能恢复
  4. 在单步调度模式下工作正常

解决方案

解决此问题的方法是为max_tokens设置合理的默认值。在vLLM上游项目中,已经通过修改to_sampling_params函数修复了这一问题。该修复为max_tokens参数添加了默认值处理逻辑。

对于KFServing项目,由于它实现了自己的vLLM前端(huggingfaceserver/vllm),而非直接使用vLLM的OpenAI前端(vllm/entrypoints/openai),因此需要将类似的修复移植到KFServing的代码中。

最佳实践建议

为避免此类问题,建议:

  1. 在使用多步调度时,始终为请求设置max_tokens参数
  2. 在服务端实现参数校验和默认值处理
  3. 考虑在模型部署配置中设置全局的max_tokens限制
  4. 监控引擎日志,及时发现和处理类似异常

总结

这个问题展示了在分布式机器学习服务中参数验证和异常处理的重要性。特别是在性能优化功能(如多步调度)中,需要确保所有依赖参数都被正确处理。对于使用KFServing和vLLM的组合部署LLM的用户,了解这一问题及其解决方案有助于构建更稳定的服务。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60