解决countries-states-cities-database项目中的localStorage配额超出问题
在开发基于浏览器的地理数据应用时,使用localStorage存储countries-states-cities-database项目的城市数据可能会遇到"Uncaught DOMException: The quota has been exceeded"错误。这个问题本质上是浏览器对本地存储空间的限制导致的。
浏览器为每个域名分配的localStorage空间通常为5MB左右,当存储的数据量超过这个限制时,就会触发配额超出异常。countries-states-cities-database作为一个包含全球国家、州省和城市信息的数据库,其数据量可能相当庞大,直接存储在localStorage中很容易达到这个上限。
解决这个问题的技术方案可以从以下几个方向考虑:
-
数据分块存储:将大数据集分割成多个小块,分别存储在localStorage的不同键中。这种方法需要实现额外的逻辑来管理数据的分块和重组。
-
改用IndexedDB:IndexedDB提供了更大的存储空间(通常为50MB以上),更适合存储countries-states-cities-database这样的大型数据集。IndexedDB还支持索引查询,可以更高效地检索地理数据。
-
数据压缩:在存储前对JSON格式的地理数据进行压缩,可以显著减少存储空间占用。常用的压缩算法如LZString可以很好地处理文本数据的压缩。
-
按需加载:根据用户实际需要只加载当前所需的国家或地区数据,而不是一次性加载全部数据。这种懒加载策略可以大大减少内存和存储的使用量。
-
定期清理:实现存储数据的过期机制,自动清理不常用的旧数据,确保始终有足够的存储空间。
在实际项目中,最佳实践可能是结合上述多种方法。例如,使用IndexedDB作为主要存储引擎,配合数据压缩和按需加载策略,可以既保证性能又避免存储配额问题。
对于countries-states-cities-database这样的地理数据库项目,开发者还需要特别注意数据更新的问题。当数据库更新时,需要确保客户端存储的数据也能相应更新,同时处理好版本迁移和兼容性问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00