Docker Build-Push Action中SBOM和Provenance的生成与验证
在Docker镜像构建和推送过程中,软件物料清单(SBOM)和来源证明(Provenance)是确保软件供应链安全的重要机制。本文将详细介绍如何在使用docker/build-push-action时正确配置和使用这些功能。
SBOM和Provenance的基本概念
SBOM(Software Bill of Materials)是一份详细列出软件组件及其依赖关系的清单,类似于制造业中的物料清单。它帮助用户了解镜像中包含的所有软件组件及其版本信息。
Provenance(来源证明)则记录了镜像的构建过程信息,包括构建环境、构建步骤、输入源等,用于验证镜像的真实性和构建过程的完整性。
配置docker/build-push-action
在GitHub Actions工作流中,可以通过以下配置启用SBOM和Provenance功能:
- uses: docker/build-push-action@v6
with:
push: true
provenance: mode=max
sbom: true
关键参数说明:
provenance: mode=max:启用最大模式的来源证明,记录最详细的构建信息sbom: true:启用SBOM生成功能
验证SBOM和Provenance
构建完成后,可以通过以下方式验证SBOM和Provenance是否已正确生成并推送:
-
使用docker buildx imagetools inspect命令:
docker buildx imagetools inspect <镜像名称> --format "{{ json .Provenance }}" -
查看构建日志: 在构建日志中,应能看到类似以下的输出,表明SBOM生成过程已完成:
[linux/amd64] generating sbom using docker.io/docker/buildkit-syft-scanner:stable-1 time="2024-08-09T09:07:42Z" level=info msg="starting syft scanner for buildkit v1.4.0"
常见问题排查
-
Provenance显示为null: 可能是查询语法不正确,确保使用正确的JSON格式查询。
-
SBOM未生成:
- 检查构建日志中是否有SBOM生成步骤
- 确认
sbom: true参数已正确设置 - 确保使用的build-push-action版本支持SBOM功能
-
推送失败:
- 检查是否有足够的权限推送附加的SBOM和Provenance数据
- 确认目标镜像仓库支持这些附加的元数据
最佳实践
-
版本控制: 始终使用固定版本的build-push-action,避免因版本更新导致的不兼容问题。
-
构建环境: 确保构建环境(GitHub Runner)有足够的资源处理SBOM生成,特别是对于大型镜像。
-
安全检查: 可以将生成的SBOM与安全检查工具集成,实现自动化的风险检测。
-
审计跟踪: 定期检查Provenance数据,确保构建过程符合预期,没有未经授权的修改。
通过正确配置和使用docker/build-push-action的SBOM和Provenance功能,可以显著提升容器化应用的安全性和可追溯性,是现代化DevSecOps实践中的重要一环。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00