Docker Build-Push Action中SBOM和Provenance的生成与验证
在Docker镜像构建和推送过程中,软件物料清单(SBOM)和来源证明(Provenance)是确保软件供应链安全的重要机制。本文将详细介绍如何在使用docker/build-push-action时正确配置和使用这些功能。
SBOM和Provenance的基本概念
SBOM(Software Bill of Materials)是一份详细列出软件组件及其依赖关系的清单,类似于制造业中的物料清单。它帮助用户了解镜像中包含的所有软件组件及其版本信息。
Provenance(来源证明)则记录了镜像的构建过程信息,包括构建环境、构建步骤、输入源等,用于验证镜像的真实性和构建过程的完整性。
配置docker/build-push-action
在GitHub Actions工作流中,可以通过以下配置启用SBOM和Provenance功能:
- uses: docker/build-push-action@v6
with:
push: true
provenance: mode=max
sbom: true
关键参数说明:
provenance: mode=max:启用最大模式的来源证明,记录最详细的构建信息sbom: true:启用SBOM生成功能
验证SBOM和Provenance
构建完成后,可以通过以下方式验证SBOM和Provenance是否已正确生成并推送:
-
使用docker buildx imagetools inspect命令:
docker buildx imagetools inspect <镜像名称> --format "{{ json .Provenance }}" -
查看构建日志: 在构建日志中,应能看到类似以下的输出,表明SBOM生成过程已完成:
[linux/amd64] generating sbom using docker.io/docker/buildkit-syft-scanner:stable-1 time="2024-08-09T09:07:42Z" level=info msg="starting syft scanner for buildkit v1.4.0"
常见问题排查
-
Provenance显示为null: 可能是查询语法不正确,确保使用正确的JSON格式查询。
-
SBOM未生成:
- 检查构建日志中是否有SBOM生成步骤
- 确认
sbom: true参数已正确设置 - 确保使用的build-push-action版本支持SBOM功能
-
推送失败:
- 检查是否有足够的权限推送附加的SBOM和Provenance数据
- 确认目标镜像仓库支持这些附加的元数据
最佳实践
-
版本控制: 始终使用固定版本的build-push-action,避免因版本更新导致的不兼容问题。
-
构建环境: 确保构建环境(GitHub Runner)有足够的资源处理SBOM生成,特别是对于大型镜像。
-
安全检查: 可以将生成的SBOM与安全检查工具集成,实现自动化的风险检测。
-
审计跟踪: 定期检查Provenance数据,确保构建过程符合预期,没有未经授权的修改。
通过正确配置和使用docker/build-push-action的SBOM和Provenance功能,可以显著提升容器化应用的安全性和可追溯性,是现代化DevSecOps实践中的重要一环。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00