TripleDoggy:一款强大的源码漏洞检测工具
项目介绍
TripleDoggy 是一款基于 Clang Static Analyzer 的源码漏洞检测工具,专为 C/C++/Objective-C 语言设计。它通过符号执行技术遍历源代码,并结合自定义的插件(Checker)来检测代码中的潜在漏洞。目前,TripleDoggy 提供了三个主要的 Checker,分别用于检测空指针解引用、Double Free/Use-After-Free/内存泄漏以及整型溢出漏洞。
项目技术分析
1. 空指针解引用检测(NewDereferenceChecker)
NewDereferenceChecker 基于 Clang 的 DereferenceChecker 进行改进,通过符号执行和约束求解技术,识别并检测代码中的空指针解引用漏洞。其核心算法包括:
- 识别内存分配函数和
new操作符的返回值。 - 在指针被访问或写入时插入 Hook 函数。
- 检查被访问的地址是否为集合 A 中的子地址,并进行约束求解,若结果为空则报告错误。
2. Double Free/Use-After-Free/内存泄漏检测(DoubleFreeChecker)
DoubleFreeChecker 通过符号执行和集合操作,记录内存的分配和释放状态,从而检测 Double Free、Use-After-Free 和内存泄漏漏洞。其主要步骤包括:
- 定义两个集合:已分配未释放的内存集合 A 和已释放的内存集合 B。
- 在符号执行过程中,记录内存的分配和释放操作。
- 检测重复释放和未释放的内存,报告相应的漏洞。
3. 整型溢出检测(OverflowChecker)
OverflowChecker 采用污点分析技术,检测代码中的整型溢出漏洞。其分析方法包括:
- 在函数开始时标记全局变量和输入参数为污点源。
- 在算术运算时检查操作数是否被污染,并记录溢出条件。
- 在数组索引访问或内存分配函数调用时,检查参数是否包含在记录中,并报告溢出漏洞。
项目及技术应用场景
TripleDoggy 适用于以下场景:
- 软件开发与测试:在开发过程中,使用 TripleDoggy 检测代码中的潜在漏洞,提高代码质量。
- 安全审计:对现有代码进行安全审计,发现并修复潜在的安全漏洞。
- 教育与研究:作为教学工具,帮助学生和研究人员理解符号执行和污点分析技术在漏洞检测中的应用。
项目特点
1. 高精度检测
TripleDoggy 通过符号执行和约束求解技术,能够高精度地检测代码中的空指针解引用、Double Free、Use-After-Free 和整型溢出漏洞。
2. 易于集成
TripleDoggy 基于 Clang Static Analyzer 开发,易于集成到现有的开发和测试流程中。开发者只需按照简单的安装步骤,即可在项目中使用 TripleDoggy 进行漏洞检测。
3. 可扩展性强
TripleDoggy 提供了丰富的 API 接口,开发者可以根据需要开发自定义的 Checker,扩展其检测能力。
4. 开源社区支持
TripleDoggy 是一个开源项目,拥有活跃的社区支持。开发者可以在 GitHub 上提交问题、贡献代码,共同推动项目的发展。
结语
TripleDoggy 作为一款强大的源码漏洞检测工具,能够帮助开发者在早期发现并修复代码中的潜在漏洞,提高软件的安全性和可靠性。无论你是开发者、安全工程师还是研究人员,TripleDoggy 都将成为你不可或缺的工具。快来尝试 TripleDoggy,让你的代码更加安全可靠!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00