TripleDoggy:一款强大的源码漏洞检测工具
项目介绍
TripleDoggy 是一款基于 Clang Static Analyzer 的源码漏洞检测工具,专为 C/C++/Objective-C 语言设计。它通过符号执行技术遍历源代码,并结合自定义的插件(Checker)来检测代码中的潜在漏洞。目前,TripleDoggy 提供了三个主要的 Checker,分别用于检测空指针解引用、Double Free/Use-After-Free/内存泄漏以及整型溢出漏洞。
项目技术分析
1. 空指针解引用检测(NewDereferenceChecker)
NewDereferenceChecker 基于 Clang 的 DereferenceChecker 进行改进,通过符号执行和约束求解技术,识别并检测代码中的空指针解引用漏洞。其核心算法包括:
- 识别内存分配函数和
new
操作符的返回值。 - 在指针被访问或写入时插入 Hook 函数。
- 检查被访问的地址是否为集合 A 中的子地址,并进行约束求解,若结果为空则报告错误。
2. Double Free/Use-After-Free/内存泄漏检测(DoubleFreeChecker)
DoubleFreeChecker 通过符号执行和集合操作,记录内存的分配和释放状态,从而检测 Double Free、Use-After-Free 和内存泄漏漏洞。其主要步骤包括:
- 定义两个集合:已分配未释放的内存集合 A 和已释放的内存集合 B。
- 在符号执行过程中,记录内存的分配和释放操作。
- 检测重复释放和未释放的内存,报告相应的漏洞。
3. 整型溢出检测(OverflowChecker)
OverflowChecker 采用污点分析技术,检测代码中的整型溢出漏洞。其分析方法包括:
- 在函数开始时标记全局变量和输入参数为污点源。
- 在算术运算时检查操作数是否被污染,并记录溢出条件。
- 在数组索引访问或内存分配函数调用时,检查参数是否包含在记录中,并报告溢出漏洞。
项目及技术应用场景
TripleDoggy 适用于以下场景:
- 软件开发与测试:在开发过程中,使用 TripleDoggy 检测代码中的潜在漏洞,提高代码质量。
- 安全审计:对现有代码进行安全审计,发现并修复潜在的安全漏洞。
- 教育与研究:作为教学工具,帮助学生和研究人员理解符号执行和污点分析技术在漏洞检测中的应用。
项目特点
1. 高精度检测
TripleDoggy 通过符号执行和约束求解技术,能够高精度地检测代码中的空指针解引用、Double Free、Use-After-Free 和整型溢出漏洞。
2. 易于集成
TripleDoggy 基于 Clang Static Analyzer 开发,易于集成到现有的开发和测试流程中。开发者只需按照简单的安装步骤,即可在项目中使用 TripleDoggy 进行漏洞检测。
3. 可扩展性强
TripleDoggy 提供了丰富的 API 接口,开发者可以根据需要开发自定义的 Checker,扩展其检测能力。
4. 开源社区支持
TripleDoggy 是一个开源项目,拥有活跃的社区支持。开发者可以在 GitHub 上提交问题、贡献代码,共同推动项目的发展。
结语
TripleDoggy 作为一款强大的源码漏洞检测工具,能够帮助开发者在早期发现并修复代码中的潜在漏洞,提高软件的安全性和可靠性。无论你是开发者、安全工程师还是研究人员,TripleDoggy 都将成为你不可或缺的工具。快来尝试 TripleDoggy,让你的代码更加安全可靠!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









