LLMLingua项目中的token级问题感知压缩机制解析
背景与核心概念
LLMLingua是一个专注于大型语言模型(LLM)高效压缩的技术项目,其核心目标是在保持语义完整性的前提下,对输入文本进行智能压缩。项目采用了分层压缩策略,其中token级的问题感知压缩机制是实现高效压缩的关键技术之一。
分层压缩架构
LLMLingua的压缩过程分为两个主要层次:
- 段落级压缩:首先将输入文本划分为若干段落单元
- token级压缩:在每个段落单元内部进行细粒度的token级别压缩
这种分层设计既考虑了文本的宏观结构,又能在微观层面实现精准压缩。
token级压缩的核心算法
token级压缩的核心是基于对比复杂度(contrastive perplexity)的评分机制。具体算法流程如下:
-
概率计算:对于每个候选token x_i,计算其在两种条件下的概率
- 条件概率:P(x_i | question, context_<i)
- 无条件概率:P(x_i | context_<i)
-
对比评分:通过对比上述两种概率得到token的重要性评分
- 当condition_compare=True时,使用条件概率
- 当condition_compare=False时,使用无条件概率
-
阈值筛选:根据评分结果决定保留或删除该token
参数配置与影响
项目中提供了两个关键参数来控制压缩行为:
-
condition_in_question:控制问题在段落级压缩中的位置
- "before":问题出现在上下文之前
- "after":问题出现在上下文之后
-
condition_compare:决定token级压缩是否考虑问题条件
- True:使用条件概率(P(context|question))
- False:使用标准概率(P(context))
值得注意的是,condition_in_question参数仅在段落级压缩中生效,而token级压缩完全由condition_compare参数控制。
技术实现细节
在实际实现中,无论condition_in_question如何设置,token级压缩都会将问题置于LLM上下文之前进行计算。这种设计确保了:
- 条件概率计算的准确性
- 压缩过程与问题的高度相关性
- 算法在不同配置下的一致性表现
应用场景与最佳实践
根据不同的应用需求,可以灵活配置参数组合:
- 高精度场景:condition_compare=True,确保压缩结果与问题高度相关
- 通用压缩场景:condition_compare=False,实现更通用的文本压缩
- 问答系统:推荐condition_in_question="before" + condition_compare=True组合
性能考量
token级问题感知压缩虽然增加了计算复杂度,但通过以下优化保持了高效性:
- 并行化token概率计算
- 基于阈值的快速筛选
- 分层处理减少不必要计算
这种设计在压缩率和语义保持之间取得了良好平衡,特别适合处理长文本输入场景。
总结
LLMLingua的token级问题感知压缩机制通过创新的对比复杂度评分和灵活的参数配置,实现了对文本的智能压缩。该技术不仅考虑文本本身的统计特性,还结合具体问题语境进行优化,为大型语言模型的高效应用提供了有力支持。理解这一机制对于有效使用LLMLingua项目以及开发类似压缩技术都具有重要意义。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00