Unsloth项目中关于LLM训练时填充策略的技术解析
2025-05-03 14:59:47作者:卓艾滢Kingsley
在大型语言模型(LLM)训练过程中,填充(padding)策略的选择是一个容易被忽视但至关重要的技术细节。本文将以Unsloth项目为例,深入探讨不同填充策略对模型训练的影响及其背后的技术考量。
填充策略的基本概念
填充是处理变长序列输入时的常见技术手段。在自然语言处理任务中,由于文本长度不一,我们需要通过添加特殊的填充标记(pad_token)使所有输入达到相同长度。填充策略主要分为两种:
- 左侧填充(padding_side='left'):在序列开头添加填充标记
 - 右侧填充(padding_side='right'):在序列末尾添加填充标记
 
不同训练场景下的填充选择
在LLM训练的不同阶段,填充策略的选择需要根据具体任务进行调整:
预训练阶段
在预训练或继续预训练场景下,通常采用右侧填充策略。这种选择的原因是:
- 模型需要学习所有token的表示
 - 右侧填充保持了原始文本的自然顺序
 - 便于处理注意力掩码(attention mask)
 
监督微调阶段
在监督微调(SFT)场景下,特别是当输入和输出需要区分时,左侧填充可能更为合适:
- 可以明确区分输入和输出部分
 - 便于在计算损失时忽略填充部分
 - 确保模型不会在填充token上进行不必要的训练
 
Unsloth项目的创新处理
Unsloth项目在处理填充策略上采用了智能的自动化机制:
- 训练阶段:自动切换为右侧填充,确保训练稳定性
 - 推理阶段:自动恢复为左侧填充,适应批量推理需求
 
这种动态调整策略解决了传统方法中的潜在问题:
- 避免了半精度训练时的溢出风险
 - 保持了批量推理时的正确性
 - 无需用户手动干预填充设置
 
技术实现考量
在实际实现中,填充策略的选择还需要考虑以下技术细节:
- 损失计算:需要确保填充token不被计入交叉熵损失
 - 注意力机制:填充token应被适当屏蔽,不参与注意力计算
 - 内存效率:合理的填充策略可以减少内存占用
 - 训练稳定性:特别是在混合精度训练时,填充位置可能影响数值稳定性
 
实践建议
对于开发者而言,在使用类似Unsloth这样的项目时:
- 了解项目默认的填充策略
 - 在自定义训练流程时注意填充一致性
 - 批量推理时验证填充方向是否正确
 - 监控训练过程中的数值稳定性
 
通过理解这些底层技术细节,开发者可以更好地利用Unsloth等优化框架,构建更稳定高效的LLM训练流程。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447