Unsloth项目中关于LLM训练时填充策略的技术解析
2025-05-03 12:52:59作者:卓艾滢Kingsley
在大型语言模型(LLM)训练过程中,填充(padding)策略的选择是一个容易被忽视但至关重要的技术细节。本文将以Unsloth项目为例,深入探讨不同填充策略对模型训练的影响及其背后的技术考量。
填充策略的基本概念
填充是处理变长序列输入时的常见技术手段。在自然语言处理任务中,由于文本长度不一,我们需要通过添加特殊的填充标记(pad_token)使所有输入达到相同长度。填充策略主要分为两种:
- 左侧填充(padding_side='left'):在序列开头添加填充标记
- 右侧填充(padding_side='right'):在序列末尾添加填充标记
不同训练场景下的填充选择
在LLM训练的不同阶段,填充策略的选择需要根据具体任务进行调整:
预训练阶段
在预训练或继续预训练场景下,通常采用右侧填充策略。这种选择的原因是:
- 模型需要学习所有token的表示
- 右侧填充保持了原始文本的自然顺序
- 便于处理注意力掩码(attention mask)
监督微调阶段
在监督微调(SFT)场景下,特别是当输入和输出需要区分时,左侧填充可能更为合适:
- 可以明确区分输入和输出部分
- 便于在计算损失时忽略填充部分
- 确保模型不会在填充token上进行不必要的训练
Unsloth项目的创新处理
Unsloth项目在处理填充策略上采用了智能的自动化机制:
- 训练阶段:自动切换为右侧填充,确保训练稳定性
- 推理阶段:自动恢复为左侧填充,适应批量推理需求
这种动态调整策略解决了传统方法中的潜在问题:
- 避免了半精度训练时的溢出风险
- 保持了批量推理时的正确性
- 无需用户手动干预填充设置
技术实现考量
在实际实现中,填充策略的选择还需要考虑以下技术细节:
- 损失计算:需要确保填充token不被计入交叉熵损失
- 注意力机制:填充token应被适当屏蔽,不参与注意力计算
- 内存效率:合理的填充策略可以减少内存占用
- 训练稳定性:特别是在混合精度训练时,填充位置可能影响数值稳定性
实践建议
对于开发者而言,在使用类似Unsloth这样的项目时:
- 了解项目默认的填充策略
- 在自定义训练流程时注意填充一致性
- 批量推理时验证填充方向是否正确
- 监控训练过程中的数值稳定性
通过理解这些底层技术细节,开发者可以更好地利用Unsloth等优化框架,构建更稳定高效的LLM训练流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178