Rust 语言服务器(RLS)开源项目最佳实践
1. 项目介绍
Rust 语言服务器(RLS)是一个运行在后台的服务器,为 IDE、编辑器和其他工具提供关于 Rust 程序的信息。它支持诸如“转到定义”、“符号搜索”、“格式化”和“代码补全”等功能,并能够进行重命名和重构。
RLS 从编译器获取精确和完整的数据,尽可能使用这些数据。在代码补全和构建过程过慢时,它会使用 Racer。由于 Rust 编译器尚未支持端到端的增量编译,RLS 无法提供完美的体验。但是,通过优化对编译器的使用并回退到 Racer,RLS 可以在中小型 crates 中提供相当不错的体验。
RLS 设计为前端独立,希望能够被不同的编辑器和 IDE 广泛采用。为了促进开发,项目提供了一个 RLS 前端的参考实现,适用于 Visual Studio Code。
2. 项目快速启动
以下步骤将帮助您快速启动 RLS 项目:
安装 rustup
您可以在多种平台上安装 rustup,这将帮助您快速安装 RLS 及其依赖项。
如果已经安装了 rustup,请更新以确保拥有最新的 rustup 和编译器:
rustup update
如果您打算使用 VSCode 扩展,可以跳过第 2 步。
安装 RLS
安装 rustup 后,运行以下命令:
rustup component add rls rust-analysis rust-src
如果遇到错误提示 “component 'rls' is unavailable for download (nightly)”,可以按照提示查找特定日期的 nightly 版本进行安装。
运行 RLS
RLS 支持与多种 IDE 和编辑器配合工作,我们主要使用 VSCode 进行测试。最简单的方式是使用发布的扩展。
当在状态栏底部看到旋转的指示器时,您就知道 RLS 正在工作了:
RLS: working ◐
当看到以下信息时:
RLS
您就可以使用完整的特性集了。您可以使用“转到定义”、“查找所有引用”、“重命名”、“转到类型”等功能。补全功能也可以通过 Racer 提供的启发式方法来使用。当您输入代码时,代码将被检查,并在发生错误时报告错误下划线。您可以悬停在这些下划线上查看错误文本。
3. 应用案例和最佳实践
以下是使用 RLS 的一些应用案例和最佳实践:
- 项目配置:使用 Visual Studio Code 扩展时,通过工作区的
settings.json文件进行配置。确保合理配置rust对象中的选项,以影响 RLS 的操作和项目的构建。 - 代码补全:启用
racer_completion选项以使用 Racer 进行代码补全。 - 构建优化:根据项目大小和需求,配置
build_on_save、wait_to_build等选项,以优化构建过程。
4. 典型生态项目
RLS 是 Rust 生态系统中的重要项目之一。以下是一些与之相关的典型生态项目:
- rust-analyzer:RLS 的替代品,提供了更强大的功能。
- Racer:一个用于 Rust 的代码补全工具,RLS 使用 Racer 作为后端之一。
- Cargo:Rust 的包管理器和构建工具,RLS 与 Cargo 密切集成。
通过遵循这些最佳实践,您可以更有效地利用 RLS 改进 Rust 项目的开发和维护。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00