pymoo中实现并发安全的并行评估方法
2025-07-01 09:53:59作者:庞眉杨Will
在基于pymoo框架进行优化时,经常会遇到需要将候选解写入文件、调用外部程序执行、再读取输出结果的场景。这种评估方式在并行环境下容易产生文件冲突问题。本文将详细介绍如何在pymoo中安全地实现这种并行评估模式。
问题背景
当使用pymoo进行优化时,评估函数(_evaluate)可能需要:
- 将候选解写入输入文件
- 调用外部程序处理该文件
- 读取输出文件获取结果
在并行环境下,多个评估过程同时进行时,如果使用相同的文件名,会导致文件读写冲突。理想情况下,每个候选解应该使用唯一的文件路径。
解决方案
pymoo提供了两种主要的问题定义方式,对应不同的并行策略:
1. 使用ElementWiseProblem
ElementWiseProblem对每个个体单独评估,适合简单场景。但正如用户发现的那样,这种方式难以在评估函数内部实现并行,因为每个个体的评估是隔离的。
2. 使用Problem类(推荐方案)
Problem类的_evaluate方法接收整个种群作为输入,这使得我们可以在方法内部实现并行处理:
class MyProblem(Problem):
def __init__(self):
super().__init__(n_var=10, n_obj=1, n_constr=0)
def _evaluate(self, X, out, *args, **kwargs):
# X包含整个种群的候选解
results = []
# 为每个个体生成唯一ID
ids = [f"temp_{i}" for i in range(len(X))]
# 并行处理所有个体
with ThreadPoolExecutor() as executor:
futures = []
for x, id in zip(X, ids):
futures.append(executor.submit(self._evaluate_single, x, id))
results = [f.result() for f in futures]
out["F"] = np.array(results)
def _evaluate_single(self, x, id):
# 使用唯一ID创建文件
input_file = f"/tmp/{id}.in"
output_file = f"/tmp/{id}.out"
# 写入输入文件
with open(input_file, "w") as f:
f.write(str(x))
# 调用外部程序
subprocess.run(["./my_program", input_file, output_file],
capture_output=True)
# 读取输出
with open(output_file, "r") as f:
result = float(f.read())
return result
关键实现要点
- 唯一标识生成:为种群中的每个个体生成唯一ID,确保文件不会冲突
- 内部并行化:在_evaluate方法内使用线程池或进程池并行处理
- 资源清理:评估完成后应及时删除临时文件,避免磁盘空间耗尽
性能考虑
- 并行粒度控制:根据外部程序的资源需求选择合适的并行度
- 文件I/O优化:考虑使用内存文件系统(tmpfs)减少I/O开销
- 结果缓存:对重复的候选解可考虑缓存评估结果
总结
pymoo的Problem类设计允许用户在评估函数内部实现灵活的并行策略。通过为每个候选解分配唯一标识并合理组织文件I/O,可以安全高效地实现需要外部程序调用的复杂评估场景。这种方法既保持了pymoo框架的灵活性,又解决了并发环境下的资源冲突问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
FANUC无限授权:开启自动化设备新篇章 hcs301滚动码编码解码演示程序:一款实用的加密工具【免费下载】 爱普生EPSON-维修技术手册下载介绍:维修人员的必备指南 批判性思维-美理查德.保罗资源下载介绍:开启独立思考之门 利用旧电脑搭建NAS教程:开启数据存储新篇章 360清理Pro独立提取版v1.0.0.1081:电脑清理的绝佳助手 整点报时语音包wav格式文件下载:为您的应用添加报时功能 Win7/XP虚拟光驱使用说明:为Windows系统提供便捷虚拟光驱服务 《产品经理认证NPDP知识体系指南》下载仓库:助力产品管理职业生涯【免费下载】 MicrosoftHTMLHELPWorkshop全图教程:轻松掌握帮助文件制作技巧
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134