Chitu项目v0.2.1版本发布:支持混合CPU+GPU推理与多款新模型
Chitu是一个专注于高效推理的开源项目,旨在为大型语言模型提供高性能的推理服务。该项目通过优化底层计算和资源调度,显著提升了模型推理的效率。最新发布的v0.2.1版本带来了多项重要更新,其中最引人注目的是混合CPU+GPU推理能力的引入,以及对多款新模型的支持。
混合CPU+GPU推理架构
v0.2.1版本的核心亮点是实现了混合CPU+GPU的推理架构。这一创新设计允许系统同时利用CPU和GPU的计算资源,实现更高效的推理过程。该架构具有以下技术特点:
-
资源协同计算:系统能够智能地将计算任务分配给CPU和GPU,充分发挥不同硬件的计算优势。例如,可以将部分计算密集型任务交给GPU处理,而将内存密集型任务交给CPU处理。
-
多GPU支持:新版本不仅支持单GPU环境,还能够充分利用多GPU的计算能力,通过并行计算大幅提升吞吐量。
-
多请求并发处理:系统优化了请求调度机制,能够高效处理多个并发推理请求,显著提升了服务的整体吞吐量。
-
动态负载均衡:系统会根据当前硬件负载情况,动态调整CPU和GPU之间的任务分配,确保资源得到最优利用。
新增模型支持
v0.2.1版本扩展了对多款主流大型语言模型的支持,包括:
-
QwQ系列模型:新增了对QwQ-32B-FP8和QwQ-32B-AWQ两种量化版本的支持。FP8版本采用8位浮点量化,在保持较高精度的同时显著减小模型体积;AWQ版本则采用激活感知的权重量化技术,在保证推理质量的前提下提升计算效率。
-
Llama系列模型:新增支持Llama-3.3-70B-Instruct模型,这是一个经过指令微调的大规模语言模型,在多种任务上表现出色。
-
DeepSeek系列模型:新增支持DeepSeek-R1-Distill-Llama-70B模型,这是通过知识蒸馏技术从Llama模型衍生而来的高效版本。
此外,版本还继续保持对Qwen2.5-32B、Mixtral-8x7B-Instruct-v0.1、Qwen2-72B-Instruct等多款热门模型的支持。
算子内核优化
v0.2.1版本对底层算子内核进行了多项优化:
-
计算图优化:改进了计算图的构建和优化过程,减少了不必要的计算和内存访问。
-
内存访问优化:通过改进数据布局和访问模式,提升了缓存利用率,减少了内存带宽压力。
-
并行计算优化:优化了多线程和GPU并行计算的调度策略,提高了硬件资源利用率。
-
量化计算优化:针对FP8、AWQ等量化模型,优化了相应的计算内核,确保量化推理的高效性。
这些优化共同作用,使得新版本在各种硬件配置下都能提供更高效的推理性能。
使用建议
对于希望使用新版本的用户,建议:
-
根据硬件配置选择合适的模型版本。例如,在显存有限的GPU上,可以考虑使用QwQ-32B-AWQ等量化版本。
-
在多GPU环境下,系统会自动利用所有可用GPU资源,无需特殊配置。
-
对于混合CPU+GPU推理,系统会自动优化资源分配,但用户也可以通过配置参数进行微调。
-
在处理多个并发请求时,系统会自动进行负载均衡,确保每个请求都能获得合理的计算资源。
Chitu项目v0.2.1版本的发布,标志着该项目在高效推理领域又迈出了重要一步。混合CPU+GPU架构的引入,以及对多款新模型的支持,使得该项目能够更好地满足不同场景下的推理需求。随着后续版本的持续优化,Chitu有望成为大型语言模型推理领域的重要选择之一。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00