CUTLASS中Tensor切分操作的技术解析
概述
在NVIDIA的CUTLASS库中,Tensor操作是核心功能之一。本文将深入探讨如何在CUTLASS中高效地进行Tensor切分和子Tensor提取操作,这是高性能计算和深度学习应用中常见的需求。
Tensor切分的基本概念
在CUTLASS中,Tensor切分指的是将一个大的Tensor划分为多个小的子Tensor。这种操作在并行计算、数据分块处理等场景中非常有用。CUTLASS提供了多种方式来实现Tensor的切分和子Tensor提取。
主要切分方法
1. 使用divide函数
divide函数是CUTLASS中最常用的Tensor切分方法之一。它可以将一个Tensor按照指定的形状进行划分:
// 创建一个256x64的Tensor
auto my_256x64 = make_tensor<float>(Shape<_256, _64>{}, LayoutRight{});
// 使用divide函数将其划分为2x64的子Tensor块
Tensor tmp = flat_divide(my_256x64, Shape<_2,_64>{});
divide操作会返回一个新的Tensor视图,其形状为(_2,_64,_128,_1),其中最后两个维度表示原始Tensor被划分后的块索引。
2. 提取特定子Tensor
在完成divide操作后,可以通过索引访问特定的子Tensor:
// 提取第一个2x64的子Tensor
Tensor my_2x64 = tmp(_,_,0,0);
这种方式明确指定了要提取的子Tensor位置,代码意图清晰。
注意事项
-
避免使用composition函数:虽然文档中提到了
composition(Tensor, Layout)的概念,但实际上CUTLASS并未实现这个函数接口。开发者应该使用divide系列函数来实现Tensor切分。 -
性能考虑:所有的切分操作都是创建Tensor视图,不会实际复制数据,因此具有很高的效率。
-
布局保持:切分操作会保持原始Tensor的内存布局,这对于性能优化非常重要。
实际应用示例
以下是一个完整的Tensor切分示例代码:
#include <cutlass/cutlass.h>
using namespace cute;
int main() {
// 创建原始Tensor
auto original = make_tensor<float>(Shape<_256, _64>{}, LayoutRight{});
// 切分为2x64的块
auto tiled = flat_divide(original, Shape<_2,_64>{});
// 提取第10个块(从0开始计数)
auto subtensor = tiled(_,_,10,0);
// 使用subtensor进行后续计算...
return 0;
}
结论
CUTLASS提供了强大而灵活的Tensor切分功能,通过divide系列函数可以高效地实现各种子Tensor提取需求。开发者应该避免使用未实现的composition接口,转而使用明确、高效的divide方法。理解这些切分操作的原理和使用方法,对于在GPU上实现高性能计算至关重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00