convolutional-pose-machines-release 的安装和配置教程
项目基础介绍
convolutional-pose-machines-release
是一个开源项目,它基于卷积神经网络(CNN)实现了一种姿态估计的方法。该项目的研究论文在 CVPR 2016 上发表,项目的主要目的是通过神经网络来识别图像中人体的姿态。它使用的主要编程语言包括 MATLAB、Python 和 Shell 脚本。
项目使用的关键技术和框架
该项目使用的关键技术是卷积神经网络,它是一种深度学习模型,经常用于图像识别和处理任务。项目利用 Caffe 深度学习框架来构建和训练神经网络模型。Caffe 是一个由伯克利视觉与学习中心(BVLC)开发的开源深度学习框架,它以配置文件和内嵌的 Python、MATLAB 接口为特点,便于研究人员快速实验。
安装和配置准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 14.04 或以上版本
- 编译器:Cmake
- 视觉库:OpenCV 2.4.10 或以上版本
- GPU 加速:NVIDIA GPU,CUDA 8.0 和 CUDNN 5
- Python:Python 2.7(项目可能不支持 Python 3)
确保您的环境中已经安装了上述所有依赖项。
安装步骤
步骤 1:克隆项目仓库
首先,您需要在您的机器上克隆项目仓库:
git clone https://github.com/shihenw/convolutional-pose-machines-release.git
cd convolutional-pose-machines-release
步骤 2:配置 Caffe
接下来,需要配置 Caffe 框架。该项目包含了一个定制化的 Caffe 子模块,您需要编译这个模块:
cd caffe
mkdir build && cd build
cmake ..
make all
make pycaffe
步骤 3:设置环境变量
将 Caffe 的库路径添加到您的 LD_LIBRARY_PATH
环境变量中,以及将 Caffe 的 Python 模块路径添加到 PYTHONPATH
环境变量中:
export LD_LIBRARY_PATH=<repo path>/caffe/build/install/lib:$LD_LIBRARY_PATH
export PYTHONPATH=<repo path>/caffe/build/install/python:$PYTHONPATH
请将 <repo path>
替换为您克隆项目仓库的实际路径。
步骤 4:获取数据集
运行以下脚本来下载数据集:
cd ..
./get_data.sh
步骤 5:生成数据集的 JSON 文件
对于每一个数据集(MPI、LEEDS、FLIC),运行以下脚本来生成 JSON 配置文件:
python genJSON(MPI)
python genJSON(LEEDS)
python genJSON(FLIC)
步骤 6:生成 LMDB 数据库
生成 LMDB 数据库以供 Caffe 使用:
python genLMDB.py
步骤 7:生成 Prototxt 文件
生成 Caffe 需要的 prototxt 配置文件:
python genProto.py
步骤 8:训练模型
使用生成的 prototxt 文件开始训练模型:
# 运行训练脚本的示例,具体命令可能根据您的配置有所不同
caffe train --solver=solver.prototxt
请确保替换 solver.prototxt
为您实际使用的 solver 配置文件名。
以上步骤为 convolutional-pose-machines-release
的基本安装和配置流程。在每一步中,您可能需要根据具体的错误信息和项目文档进行调试。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









