convolutional-pose-machines-release 的安装和配置教程
项目基础介绍
convolutional-pose-machines-release 是一个开源项目,它基于卷积神经网络(CNN)实现了一种姿态估计的方法。该项目的研究论文在 CVPR 2016 上发表,项目的主要目的是通过神经网络来识别图像中人体的姿态。它使用的主要编程语言包括 MATLAB、Python 和 Shell 脚本。
项目使用的关键技术和框架
该项目使用的关键技术是卷积神经网络,它是一种深度学习模型,经常用于图像识别和处理任务。项目利用 Caffe 深度学习框架来构建和训练神经网络模型。Caffe 是一个由伯克利视觉与学习中心(BVLC)开发的开源深度学习框架,它以配置文件和内嵌的 Python、MATLAB 接口为特点,便于研究人员快速实验。
安装和配置准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 14.04 或以上版本
- 编译器:Cmake
- 视觉库:OpenCV 2.4.10 或以上版本
- GPU 加速:NVIDIA GPU,CUDA 8.0 和 CUDNN 5
- Python:Python 2.7(项目可能不支持 Python 3)
确保您的环境中已经安装了上述所有依赖项。
安装步骤
步骤 1:克隆项目仓库
首先,您需要在您的机器上克隆项目仓库:
git clone https://github.com/shihenw/convolutional-pose-machines-release.git
cd convolutional-pose-machines-release
步骤 2:配置 Caffe
接下来,需要配置 Caffe 框架。该项目包含了一个定制化的 Caffe 子模块,您需要编译这个模块:
cd caffe
mkdir build && cd build
cmake ..
make all
make pycaffe
步骤 3:设置环境变量
将 Caffe 的库路径添加到您的 LD_LIBRARY_PATH 环境变量中,以及将 Caffe 的 Python 模块路径添加到 PYTHONPATH 环境变量中:
export LD_LIBRARY_PATH=<repo path>/caffe/build/install/lib:$LD_LIBRARY_PATH
export PYTHONPATH=<repo path>/caffe/build/install/python:$PYTHONPATH
请将 <repo path> 替换为您克隆项目仓库的实际路径。
步骤 4:获取数据集
运行以下脚本来下载数据集:
cd ..
./get_data.sh
步骤 5:生成数据集的 JSON 文件
对于每一个数据集(MPI、LEEDS、FLIC),运行以下脚本来生成 JSON 配置文件:
python genJSON(MPI)
python genJSON(LEEDS)
python genJSON(FLIC)
步骤 6:生成 LMDB 数据库
生成 LMDB 数据库以供 Caffe 使用:
python genLMDB.py
步骤 7:生成 Prototxt 文件
生成 Caffe 需要的 prototxt 配置文件:
python genProto.py
步骤 8:训练模型
使用生成的 prototxt 文件开始训练模型:
# 运行训练脚本的示例,具体命令可能根据您的配置有所不同
caffe train --solver=solver.prototxt
请确保替换 solver.prototxt 为您实际使用的 solver 配置文件名。
以上步骤为 convolutional-pose-machines-release 的基本安装和配置流程。在每一步中,您可能需要根据具体的错误信息和项目文档进行调试。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00