Roc语言中List.splitOnSeq函数的实现与解析
Roc语言是一种新兴的函数式编程语言,其标准库正在不断丰富和完善。本文将深入分析一个为Roc语言内置List模块新增的splitOnSeq函数实现,该函数能够根据指定的子序列来分割列表。
函数功能概述
splitOnSeq函数的主要功能是将一个列表按照给定的子序列进行分割,返回分割后的子列表集合。例如,对列表[1,2,3,4,5,6,7,8,9,10,3,4,5,6,7,8,9,10]使用子序列[3,4,5]进行分割,会得到[[1,2], [6,7,8,9,10], [6,7,8,9,10]]。
实现原理
该实现采用了两个主要阶段的分步处理策略:
- 标记阶段:遍历输入列表,找出所有匹配子序列的位置,并记录这些位置的开始和结束索引
- 分割阶段:根据标记阶段生成的索引信息,将原始列表分割成多个子列表
标记阶段实现
标记阶段使用walkHelpFindStarts辅助函数,该函数会生成一系列Start和Stop标记:
walkHelpFindStarts = \input, needle ->
if input == [] || needle == [] then
\_, _, _ -> []
else
\state, _, idx ->
len = List.len needle
if List.sublist input { start: idx, len } == needle then
state
|> List.append (Stop idx)
|> List.append (Start (idx + len))
else
state
这个函数会检查输入列表中的每个位置,看从该位置开始的子列表是否与目标子序列匹配。如果匹配,则记录一个Stop标记(表示匹配开始的位置)和一个Start标记(表示匹配结束后的位置)。
分割阶段实现
分割阶段使用walkSplitHelp函数处理标记并生成最终结果:
walkSplitHelp = \input, tokens ->
go = \remainingTokens, acc ->
when remainingTokens is
[] -> acc
[Stop stop, .. as rest] if stop == 0 -> go rest acc
[Stop stop, .. as rest] ->
go rest (List.append acc (List.sublist input {start: 0, len: stop}))
[Start start, Stop stop, .. as rest] ->
go rest (List.append acc (List.sublist input {start, len: stop - start}))
[Start start] if start >= List.len input -> acc
[Start start] ->
List.append acc (List.sublist input {start, len: ((List.len input) - start)})
_ -> crash "unreachable $(Inspect.toStr remainingTokens)"
go tokens []
这个函数递归处理标记列表,根据不同的标记组合提取相应的子列表。它处理了多种边界情况,如标记在列表开头或结尾的情况。
边界条件处理
实现中特别考虑了多种边界情况:
- 空输入列表或空子序列时直接返回空列表
- 子序列出现在列表开头时正确处理
- 子序列出现在列表结尾时正确处理
- 多个子序列连续出现时的处理
- 子序列重叠情况的处理(当前实现不支持重叠)
性能考虑
实现中使用了List.withCapacity预先分配标记列表的空间,这有助于提高性能。分割操作的时间复杂度主要取决于输入列表长度和子序列长度,最坏情况下为O(n*m),其中n是输入列表长度,m是子序列长度。
实际应用场景
这种分割功能在文本处理、日志分析、数据解析等场景中非常有用。例如:
- 解析特定分隔符分隔的数据
- 处理包含特定标记的文本
- 分析包含固定模式的序列数据
总结
Roc语言的这个List.splitOnSeq实现展示了函数式编程处理列表问题的典型模式:通过生成中间数据结构(标记列表)来清晰地表达算法逻辑,然后基于这些中间数据进行最终结果的计算。这种分阶段处理的方式既保证了代码的可读性,又能够正确处理各种边界情况。该实现已被纳入Roc语言的标准库中,为开发者提供了强大的列表处理能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00