Roc语言中List.splitOnSeq函数的实现与解析
Roc语言是一种新兴的函数式编程语言,其标准库正在不断丰富和完善。本文将深入分析一个为Roc语言内置List模块新增的splitOnSeq函数实现,该函数能够根据指定的子序列来分割列表。
函数功能概述
splitOnSeq函数的主要功能是将一个列表按照给定的子序列进行分割,返回分割后的子列表集合。例如,对列表[1,2,3,4,5,6,7,8,9,10,3,4,5,6,7,8,9,10]使用子序列[3,4,5]进行分割,会得到[[1,2], [6,7,8,9,10], [6,7,8,9,10]]。
实现原理
该实现采用了两个主要阶段的分步处理策略:
- 标记阶段:遍历输入列表,找出所有匹配子序列的位置,并记录这些位置的开始和结束索引
- 分割阶段:根据标记阶段生成的索引信息,将原始列表分割成多个子列表
标记阶段实现
标记阶段使用walkHelpFindStarts辅助函数,该函数会生成一系列Start和Stop标记:
walkHelpFindStarts = \input, needle ->
if input == [] || needle == [] then
\_, _, _ -> []
else
\state, _, idx ->
len = List.len needle
if List.sublist input { start: idx, len } == needle then
state
|> List.append (Stop idx)
|> List.append (Start (idx + len))
else
state
这个函数会检查输入列表中的每个位置,看从该位置开始的子列表是否与目标子序列匹配。如果匹配,则记录一个Stop标记(表示匹配开始的位置)和一个Start标记(表示匹配结束后的位置)。
分割阶段实现
分割阶段使用walkSplitHelp函数处理标记并生成最终结果:
walkSplitHelp = \input, tokens ->
go = \remainingTokens, acc ->
when remainingTokens is
[] -> acc
[Stop stop, .. as rest] if stop == 0 -> go rest acc
[Stop stop, .. as rest] ->
go rest (List.append acc (List.sublist input {start: 0, len: stop}))
[Start start, Stop stop, .. as rest] ->
go rest (List.append acc (List.sublist input {start, len: stop - start}))
[Start start] if start >= List.len input -> acc
[Start start] ->
List.append acc (List.sublist input {start, len: ((List.len input) - start)})
_ -> crash "unreachable $(Inspect.toStr remainingTokens)"
go tokens []
这个函数递归处理标记列表,根据不同的标记组合提取相应的子列表。它处理了多种边界情况,如标记在列表开头或结尾的情况。
边界条件处理
实现中特别考虑了多种边界情况:
- 空输入列表或空子序列时直接返回空列表
- 子序列出现在列表开头时正确处理
- 子序列出现在列表结尾时正确处理
- 多个子序列连续出现时的处理
- 子序列重叠情况的处理(当前实现不支持重叠)
性能考虑
实现中使用了List.withCapacity预先分配标记列表的空间,这有助于提高性能。分割操作的时间复杂度主要取决于输入列表长度和子序列长度,最坏情况下为O(n*m),其中n是输入列表长度,m是子序列长度。
实际应用场景
这种分割功能在文本处理、日志分析、数据解析等场景中非常有用。例如:
- 解析特定分隔符分隔的数据
- 处理包含特定标记的文本
- 分析包含固定模式的序列数据
总结
Roc语言的这个List.splitOnSeq实现展示了函数式编程处理列表问题的典型模式:通过生成中间数据结构(标记列表)来清晰地表达算法逻辑,然后基于这些中间数据进行最终结果的计算。这种分阶段处理的方式既保证了代码的可读性,又能够正确处理各种边界情况。该实现已被纳入Roc语言的标准库中,为开发者提供了强大的列表处理能力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00