Module Federation在Rsbuild多环境开发中的路径配置问题解析
问题背景
在使用Rsbuild构建工具配合Module Federation插件进行多环境开发时,开发者可能会遇到一个典型问题:在开发服务器(dev server)模式下,Module Federation生成的manifest文件无法按照预期路径被正确访问。具体表现为构建产物虽然能正确输出到不同目录,但在开发服务器运行时,所有环境的manifest文件都被错误地合并到了根路径下。
问题现象
当配置了多个环境(如环境a和环境b)时,预期行为应该是:
- 环境a的manifest文件可通过
/a/mf-manifest.json访问 - 环境b的manifest文件可通过
/b/mf-manifest.json访问
但实际运行时发现:
- 只有根路径下的
/mf-manifest.json可访问 - 该文件只包含其中一个环境(如环境a)的内容
- 另一个环境(如环境b)的资源完全不可访问
技术分析
这个问题本质上是由开发服务器对静态资源路径的处理方式与构建输出不一致导致的。在多环境配置中,虽然通过output.distPath.root指定了不同的输出目录,但开发服务器默认会将这些资源都映射到根路径下,导致路径冲突。
Module Federation插件生成的manifest文件和远程模块资源需要保持一致的访问路径,否则会导致模块加载失败。在开发模式下,由于缺少类似生产环境的多目录部署机制,需要额外配置来区分不同环境的资源路径。
解决方案
经过验证,最有效的解决方法是使用Rsbuild提供的dev.assetPrefix配置项。该配置专门用于在开发模式下为所有静态资源添加前缀路径。
具体配置示例:
a: {
dev: {
assetPrefix: "/a",
},
// 其他配置...
},
b: {
dev: {
assetPrefix: "/b",
},
// 其他配置...
}
这个配置会确保:
- 环境a的所有资源(包括MF生成的manifest和远程模块)都通过
/a/路径前缀访问 - 环境b的所有资源都通过
/b/路径前缀访问 - 开发服务器会正确处理这些带前缀的请求
深入理解
assetPrefix配置在开发模式和生产模式下的行为有所不同:
- 开发模式:影响的是资源请求路径
- 生产模式:影响的是资源引用路径(如HTML中引用的JS/CSS路径)
在多环境开发中,使用dev.assetPrefix可以模拟生产环境的路径结构,确保Module Federation的远程模块能够被正确加载。这与生产环境下通过output.distPath.root实现的物理目录隔离是相对应的。
最佳实践建议
- 在多环境开发中,始终为每个环境配置对应的
dev.assetPrefix - 保持
dev.assetPrefix与生产环境的部署路径一致 - 对于Module Federation项目,确保所有相关配置(如
publicPath)与assetPrefix协调一致 - 在复杂的微前端架构中,可以考虑编写自动化脚本来同步这些路径配置
通过正确配置开发环境下的资源路径前缀,可以确保Module Federation在开发阶段就能获得与生产环境一致的行为,提高开发体验和部署可靠性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00