Module Federation在Rsbuild多环境开发中的路径配置问题解析
问题背景
在使用Rsbuild构建工具配合Module Federation插件进行多环境开发时,开发者可能会遇到一个典型问题:在开发服务器(dev server)模式下,Module Federation生成的manifest文件无法按照预期路径被正确访问。具体表现为构建产物虽然能正确输出到不同目录,但在开发服务器运行时,所有环境的manifest文件都被错误地合并到了根路径下。
问题现象
当配置了多个环境(如环境a和环境b)时,预期行为应该是:
- 环境a的manifest文件可通过
/a/mf-manifest.json访问 - 环境b的manifest文件可通过
/b/mf-manifest.json访问
但实际运行时发现:
- 只有根路径下的
/mf-manifest.json可访问 - 该文件只包含其中一个环境(如环境a)的内容
- 另一个环境(如环境b)的资源完全不可访问
技术分析
这个问题本质上是由开发服务器对静态资源路径的处理方式与构建输出不一致导致的。在多环境配置中,虽然通过output.distPath.root指定了不同的输出目录,但开发服务器默认会将这些资源都映射到根路径下,导致路径冲突。
Module Federation插件生成的manifest文件和远程模块资源需要保持一致的访问路径,否则会导致模块加载失败。在开发模式下,由于缺少类似生产环境的多目录部署机制,需要额外配置来区分不同环境的资源路径。
解决方案
经过验证,最有效的解决方法是使用Rsbuild提供的dev.assetPrefix配置项。该配置专门用于在开发模式下为所有静态资源添加前缀路径。
具体配置示例:
a: {
dev: {
assetPrefix: "/a",
},
// 其他配置...
},
b: {
dev: {
assetPrefix: "/b",
},
// 其他配置...
}
这个配置会确保:
- 环境a的所有资源(包括MF生成的manifest和远程模块)都通过
/a/路径前缀访问 - 环境b的所有资源都通过
/b/路径前缀访问 - 开发服务器会正确处理这些带前缀的请求
深入理解
assetPrefix配置在开发模式和生产模式下的行为有所不同:
- 开发模式:影响的是资源请求路径
- 生产模式:影响的是资源引用路径(如HTML中引用的JS/CSS路径)
在多环境开发中,使用dev.assetPrefix可以模拟生产环境的路径结构,确保Module Federation的远程模块能够被正确加载。这与生产环境下通过output.distPath.root实现的物理目录隔离是相对应的。
最佳实践建议
- 在多环境开发中,始终为每个环境配置对应的
dev.assetPrefix - 保持
dev.assetPrefix与生产环境的部署路径一致 - 对于Module Federation项目,确保所有相关配置(如
publicPath)与assetPrefix协调一致 - 在复杂的微前端架构中,可以考虑编写自动化脚本来同步这些路径配置
通过正确配置开发环境下的资源路径前缀,可以确保Module Federation在开发阶段就能获得与生产环境一致的行为,提高开发体验和部署可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00