Statamic多语言站点中获取本地化数量的正确方法
2025-06-14 06:42:23作者:郦嵘贵Just
在Statamic CMS开发多语言站点时,开发者经常需要获取当前页面的本地化版本数量。本文深入探讨了在Blade模板中正确使用locales:count标签的方法,并解释了背后的技术原理。
问题背景
当使用Statamic的Blade模板开发多语言站点时,开发者可能会遇到以下情况:
- 使用Antlers组件语法
<s:locales:count />可以正常工作 - 但使用Fluent Tags语法
Statamic::tag('locales:count')却返回0 - 类似的
@tags('locales')也无法正常工作
技术原理分析
这种现象的根本原因在于上下文(Context)的传递机制不同:
- Antlers组件会自动继承当前模板的上下文,包括当前页面/条目的ID
- Fluent Tags默认不会自动获取上下文,需要手动指定目标ID
- 因此,当使用Fluent Tags时,系统无法确定要查询哪个条目的本地化版本
解决方案
方法一:使用Antlers组件语法(推荐)
<s:locales:count /> {# 获取包含当前语言在内的所有本地化数量 #}
<s:locales:count self="false" /> {# 获取不包括当前语言的其他本地化数量 #}
这是最简单直接的方法,推荐在大多数情况下使用。
方法二:使用Fluent Tags并指定ID
当需要在Blade中进行更复杂的逻辑处理时,可以使用Fluent Tags语法,但必须显式指定目标ID:
{{ Statamic::tag('locales:count')->id($id) }}
其中$id应该是当前页面或条目的ID变量。
最佳实践建议
- 简单场景:优先使用Antlers组件语法,代码更简洁
- 复杂逻辑:当需要在Blade中进行变量赋值或其他处理时,使用Fluent Tags并确保传递ID
- IDE兼容性:如果IDE对Antlers语法支持不佳,可以考虑在Blade中使用
@antlers指令包裹Antlers代码
技术要点总结
- Statamic的本地化功能依赖于上下文环境
- 不同语法获取上下文的方式不同
- 理解上下文传递机制是解决问题的关键
- 在Blade模板中混合使用Antlers和PHP逻辑时需要注意上下文隔离
通过理解这些原理,开发者可以更灵活地在Statamic项目中实现多语言功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
322
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
247
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885