Sidekiq-Cron v2.3.0 版本发布:增强命名空间支持与配置优化
Sidekiq-Cron 是一个基于 Sidekiq 的定时任务调度插件,它允许开发者使用类似 Cron 的语法来安排后台任务的执行。作为 Sidekiq 生态中的重要组件,Sidekiq-Cron 为 Ruby 开发者提供了简单可靠的定时任务解决方案。
最新发布的 v2.3.0 版本带来了一系列改进和修复,主要集中在命名空间功能的增强和配置加载机制的优化上。这些改进使得 Sidekiq-Cron 在多租户环境和复杂部署场景下表现更加稳定可靠。
命名空间功能的全面改进
v2.3.0 版本对命名空间功能进行了重大重构。在之前的版本中,当开发者显式提供命名空间配置时,默认命名空间可能会丢失,导致任务调度出现问题。新版本彻底解决了这个问题,确保无论是否显式配置命名空间,系统都能正确处理任务调度。
这一改进特别适合在多租户应用中使用,开发者现在可以更灵活地为不同租户配置独立的命名空间,而不用担心默认命名空间的丢失问题。例如:
Sidekiq::Cron::Job.create(
name: 'Daily Report',
cron: '0 8 * * *',
class: 'DailyReportWorker',
namespace: 'tenant1'
)
配置加载机制的优化
新版本改进了配置文件的加载时机,现在可以在 Sidekiq 的回调中加载调度文件。这一变化使得配置加载更加灵活,开发者可以根据应用的实际需求决定何时加载定时任务配置。
同时,v2.3.0 版本还支持 Sidekiq 的嵌入式配置,这意味着 Sidekiq-Cron 可以更好地与 Sidekiq 的其他配置选项协同工作。例如,现在可以在 Sidekiq 的配置文件中直接包含 Sidekiq-Cron 的配置:
Sidekiq.configure_server do |config|
config.embedded = true
# 其他配置...
end
WEB 扩展的兼容性改进
针对 WEB 扩展中使用原始 params 参数导致的弃用警告,v2.3.0 版本进行了修复。这一改进确保了 Sidekiq-Cron 与最新版本的 Sidekiq WEB 界面兼容,避免了控制台中出现不必要的警告信息。
测试与代码质量的提升
除了功能改进外,v2.3.0 版本还修复了测试相关的 RuboCop 违规问题,进一步提升了代码质量。这些改进虽然对最终用户不可见,但有助于保持项目的长期可维护性。
文档更新
新版本还更新了 README 文件,修正了方法名的描述错误,确保开发者能够根据文档正确使用 API。准确的文档对于开源项目的采用至关重要,这一改进将帮助新用户更快上手。
升级建议
对于正在使用 Sidekiq-Cron 的项目,特别是那些使用命名空间功能或多租户架构的应用,建议尽快升级到 v2.3.0 版本。新版本不仅修复了关键问题,还提供了更灵活的配置选项。升级过程通常只需更新 Gemfile 中的版本号并运行 bundle update 即可。
Sidekiq-Cron 持续保持与 Sidekiq 生态系统的紧密集成,v2.3.0 版本的发布再次证明了这一点。无论是小型应用还是大型企业系统,Sidekiq-Cron 都提供了可靠、灵活的定时任务解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00