Psycopg中JSON序列化函数的内存泄漏问题分析与解决方案
2025-07-06 05:42:51作者:余洋婵Anita
问题背景
在使用Python的PostgreSQL适配器Psycopg时,开发者可能会遇到一个与JSON序列化相关的内存泄漏问题。这个问题特别容易在使用lambda函数或局部函数作为JSON序列化器时出现。
问题本质
Psycopg内部实现了一个LRU缓存机制来优化JSON序列化函数的性能。当开发者使用set_json_dumps()或set_json_loads()方法设置自定义的JSON序列化/反序列化函数时,Psycopg会将这些函数缓存起来以提高后续调用的效率。
问题出在缓存键的生成方式上:Psycopg使用函数的__qualname__属性作为缓存键的一部分。对于lambda函数或局部函数,每次创建连接时都会生成新的函数对象,即使这些函数在逻辑上是相同的。这导致缓存不断增长,最终引发内存泄漏。
重现场景
以下代码可以重现这个问题:
from psycopg.types.json import set_json_dumps
import psycopg
import json
def connect():
conn = psycopg.connect("postgresql://user:pass@localhost/db")
# 使用lambda函数会导致内存泄漏
set_json_dumps(lambda obj: json.dumps(obj, ensure_ascii=False), conn)
return conn
def main():
while True:
with connect() as conn:
conn.execute("SELECT 1;")
技术原理分析
Psycopg的JSON类型处理模块内部使用了一个装饰器@lru_cache来缓存适配器函数。当使用lambda函数时:
- 每次调用
connect()都会创建一个新的lambda函数对象 - 虽然这些lambda函数在功能上完全相同,但它们的对象ID不同
- 由于
__qualname__属性对于lambda函数都是"",Psycopg无法区分它们 - 导致缓存中不断添加新的条目,而旧的条目无法被回收
解决方案
Psycopg团队已经修复了这个问题,但开发者也可以采取以下最佳实践来避免内存问题:
1. 使用顶层函数
将JSON序列化函数定义为模块级别的函数:
def custom_json_dumps(obj):
return json.dumps(obj, ensure_ascii=False)
def connect():
conn = psycopg.connect("postgresql://user:pass@localhost/db")
set_json_dumps(custom_json_dumps, conn)
return conn
2. 避免使用lambda或局部函数
不要在内置函数或方法内部定义JSON处理函数:
# 不推荐的做法
def connect():
def local_dumps(obj): # 这也是局部函数
return json.dumps(obj)
conn = psycopg.connect(...)
set_json_dumps(local_dumps, conn) # 可能导致内存问题
return conn
3. 使用常量引用
如果需要多次使用同一个函数,可以使用常量引用:
JSON_DUMPS = lambda obj: json.dumps(obj) # 不推荐,仍然可能有问题
# 更好的做法
def _json_dumps(obj):
return json.dumps(obj)
JSON_DUMPS = _json_dumps # 推荐
最新版本改进
在Psycopg的最新版本中,团队已经优化了这个问题:
- 对于没有闭包的lambda函数或局部函数,现在可以正常工作而不会泄漏内存
- 对于包含闭包的函数,Psycopg会发出警告,因为这些函数仍然无法被正确缓存
- 缓存机制仍然保留,但处理方式更加智能
总结
在使用Psycopg进行JSON数据处理时,开发者应当注意:
- 优先使用模块级别的函数作为JSON序列化器
- 避免在连接函数内部定义lambda或局部处理函数
- 如果发现内存增长问题,检查是否遵循了上述最佳实践
- 考虑升级到最新版本的Psycopg以获得更好的内存管理
通过遵循这些指导原则,开发者可以充分利用Psycopg的JSON处理能力,同时避免潜在的内存泄漏问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1