DeepMD-kit在AMD系统上使用PyTorch后端编译失败问题解析
2025-07-10 04:17:23作者:邓越浪Henry
问题背景
DeepMD-kit是一款基于深度学习的分子动力学模拟工具,在v3.0.0b1版本中,当用户在AMD系统上使用PyTorch后端进行源码编译时,可能会遇到编译失败的问题。该问题主要表现为构建系统无法找到libamdhip64.so库文件,即使已经正确设置了ROCM_PATH和ROCM_ROOT环境变量。
问题根源分析
经过深入调查,发现该问题的根本原因在于PyTorch的构建配置文件中硬编码了ROCm库的路径。具体表现为:
- PyTorch的构建配置文件
Caffe2Targets.cmake中固定使用了/opt/rocm/lib/libamdhip64.so路径 - 而实际上用户的ROCm可能安装在其他目录(如
/opt/rocm-6.0.0) - 这种硬编码路径的方式导致了构建系统无法正确识别用户自定义的ROCm安装路径
技术细节
在AMD系统上使用PyTorch后端时,DeepMD-kit依赖于ROCm(Radeon Open Compute)平台提供的GPU计算支持。ROCm的安装路径通常通过ROCM_PATH或ROCM_ROOT环境变量指定。然而,PyTorch的构建系统并未正确使用这些环境变量,而是直接引用了固定的路径。
解决方案
针对这一问题,目前有以下几种解决方案:
-
临时解决方案(适用于conda环境用户):
- 编辑文件:
miniconda3/envs/myenv/lib/python3.12/site-packages/torch/share/cmake/Caffe2/Caffe2Targets.cmake - 使用替换命令将所有
/opt/rocm替换为${ROCM_PATH}
- 编辑文件:
-
等待上游修复:
- PyTorch团队已经在新版本中修复了这个问题
- 用户可以升级到包含修复的PyTorch版本
-
创建符号链接(如有权限):
- 在
/opt目录下创建指向实际ROCm安装目录的符号链接 - 例如:
ln -s /opt/rocm-6.0.0 /opt/rocm
- 在
最佳实践建议
对于需要在AMD系统上使用DeepMD-kit PyTorch后端的用户,建议:
- 首先检查PyTorch版本,确保使用的是包含修复的版本
- 如果必须使用旧版本,可以采用临时解决方案
- 在安装ROCm时,尽量使用标准路径(
/opt/rocm)以避免此类问题 - 定期关注DeepMD-kit和PyTorch的更新,及时获取最新的兼容性修复
总结
DeepMD-kit在AMD系统上的PyTorch后端支持依赖于ROCm平台,而PyTorch构建系统中的路径硬编码问题导致了编译失败。通过理解问题的技术背景和解决方案,用户可以更顺利地完成DeepMD-kit的安装和配置工作。随着上游问题的修复,这一兼容性问题将得到根本解决。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493