CppCoreGuidelines中关于shared_ptr与unique_ptr选择规则的探讨
在C++核心指南(CppCoreGuidelines)项目中,有一条重要的资源管理规则R.21建议开发者优先使用unique_ptr而非shared_ptr,除非确实需要共享所有权。这条规则旨在帮助开发者避免不必要的共享所有权带来的性能开销和复杂性。
规则背景与原始定义
规则R.21的原始定义明确指出,在大多数情况下unique_ptr是更好的选择,因为它提供了更简单的所有权语义和更好的性能。该规则的强制执行部分最初规定:当函数内部使用shared_ptr创建对象,但既不返回该shared_ptr,也不将其传递给需要shared_ptr&参数的函数时,应该发出警告并建议改用unique_ptr。
实际应用中的问题
在实际编码实践中,开发者发现这条规则的强制执行部分存在一些局限性。考虑以下典型场景:
void Registry::add(shared_ptr<Participant> w);
void f(Registry &r1, Registry &r2) {
const auto p = make_shared<Participant>();
r1.add(p);
r2.add(p);
}
在这个例子中,虽然shared_ptr被多次传递给不同函数,但根据原始规则仍会被标记为应该使用unique_ptr,这显然是不合理的,因为unique_ptr无法满足这种共享需求。
规则改进建议
针对这一问题,社区提出了改进建议,主张扩展规则的强制执行条件。新的条件应包括:
- 函数不返回该shared_ptr
- 不将其传递给需要shared_ptr&参数的函数
- 不将其作为shared_ptr参数(值传递或引用传递)传递给函数超过一次
这一改进更准确地反映了实际使用场景,避免了误报。
技术深入分析
值得注意的是,原始规则中提到的shared_ptr&参数有其特殊意义。当函数接受shared_ptr参数时,实际上可以传递unique_ptr作为右值(通过std::move)。这使得在某些情况下,即使接口设计为接受shared_ptr,仍然可以使用unique_ptr来传递所有权。
然而,改进后的规则仍需考虑更多复杂情况。例如,即使shared_ptr只被传递一次,但如果之后还要使用它(如解引用访问对象),unique_ptr也无法满足需求,因为传递后原指针已被移动。
核心指南的最终调整
经过讨论,C++核心指南的编辑团队决定采纳部分改进建议,特别是移除了对shared_ptr&参数的特定限制。这一调整使得规则更加通用和实用,同时保持了其指导开发者选择合适智能指针的初衷。
最佳实践总结
在实际开发中,选择智能指针时应遵循以下原则:
- 默认使用unique_ptr,它提供了最简单的所有权语义和最佳性能
- 仅在确实需要共享所有权时才使用shared_ptr
- 注意函数参数设计,考虑是否可以通过接受unique_ptr来提供更大的灵活性
- 在性能敏感的场景中,避免不必要的shared_ptr使用,因为其引用计数机制会带来额外开销
通过理解这些原则和规则背后的设计考量,开发者可以更有效地管理C++程序中的资源所有权,编写出更健壮、高效的代码。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00